

SPi Global

eBook ad 7x9-1875 outlined.indd 1 12/7/2011 10:15:48 AM

Inno ationLab

http://www.spi-global.com/

Accessible EPUB 3

Matt Garrish

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Accessible EPUB 3
by Matt Garrish

Copyright © 2012 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brian Sawyer
Production Editor: Dan Fauxsmith
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-02-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449328030 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Accessible EPUB 3 and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32803-0

[LSI]

1328628844

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449328030

Table of Contents

Preface . v

1. Introduction . 1

The Digital Famine 2
	
Accessibility and Usability 3
	

2. Building a Better EPUB: Fundamental Accessibility . 7

A Solid Foundation: Structure and Semantics 7
	

Data Integrity 9
	
Separation of Style 11
	
Semantic Inflection 12
	
Language 13
	
Logical Reading Order 14
	
Sections and Headings 15
	
Context Changes 17
	
Lists 18
	
Tables 19
	
Figures 22
	
Images 22
	
SVG 23
	
MathML 24
	
Footnotes 26
	
Page Numbering 26
	

Getting Around: Navigating an EPUB 27
	
The Untold Story: Metadata 32
	

3. It’s Alive: Rich Content Accessibility . 37

The Sound and the Fury: Audio and Video 37
	

Timed Tracks 39
	
Talk to Me: Media Overlays 41
	

Building an Overlay 44
	

iii

Structural Considerations 49
	
Tell It Like It Is: Text-to-Speech (TTS) 50
	

PLS Lexicons 53
	
SSML 57
	
CSS3 Speech 61
	

The Coded Word: Scripted Interactivity 65
	
A Little Help: WAI-ARIA 67
	

Custom Controls 67
	
Forms 73
	
Live Regions 75
	

A Blank Slate: Canvas 77
	

4. Conclusion . 79

EPUB 3 Best Practices Teaser 79
	

About the Book 81
	

iv | Table of Contents

Preface

Accessibility is a difficult concept to define. There’s no single magic bullet solution that
will make all content accessible to all people. Perhaps that’s a strange way to preface a
book on accessible practices, but it’s also a reality you need to be aware of. Accessible
practices change, technologies evolve to solve stubborn problems, and the world be-
comes a more accessible place all the time.

But although there are best practices that everyone should be following, and that will
be detailed as we go along, this guide should neither be read as an instrument for
accessibility compliance nor as a replacement for existing guidelines.

The goal is to provide you with insights and ideas into how to begin making your
publications richer for all readers at the same time that you make them more accessible.
Proliferating usability guidelines and muddying the waters of compliance is not its
intent. There are areas that would take a book unto themselves to explore in detail in
relation to the use of HTML5 content within EPUB, such as the Web Content Acces-
sibility Guidelines (WCAG) and Web Accessibility Initiative’s Accessible Rich Internet
Applications (WAI-ARIA). Whenever issues extend beyond what can be covered in
these best practices, pointers to where you can obtain more information will be in-
cluded. Don’t fall into the trap of hand-picking accessibility.

It is also naturally the case with a standard as new and wide-ranging as EPUB 3 that
best practices will evolve and develop as the features it offers are explored and imple-
mented. This guide will endeavor to make clear whenever uncertainty exists around an
approach, what alternatives there are, and where you should be looking to watch for
developments.

You need to be thinking about accessibility and planning good content practices from
the outset if you’re going to make the most of the features EPUB 3 has to offer. This
guide will be your map, but you have to be willing to follow it.

This guide is envisioned as a living document and intended to be up-
dated and re-released as new practices and techniques evolve.

v

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Accessible EPUB 3 by Matt Garrish
(O’Reilly). Copyright 2012 Matt Garrish, 9781449328030.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

vi | Preface

mailto:permissions@oreilly.com

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily
	
search over 7,500 technology and creative reference books and videos to
	
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920025283.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

http://my.safaribooksonline.com/?portal=oreilly
http://shop.oreilly.com/product/0636920025283.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank the following people for their invaluable input, assistance re-
viewing, and plain general patience answering my dumb questions along the way:
Markus Gylling, George Kerscher, Daniel Weck, Romain Deltour, and Marisa DeMe-
glio from the DAISY Consortium; Graham Bell from EDItEUR; Dave Gunn from RNIB;
Ping Mei Law, Richard Wilson, and Sean Brooks from CNIB; and Dave Cramer from
Hachette Book Group.

And a special second thanks to Markus, Bill McCoy, and George for the opportunity I
was given to be involved in the EPUB revision and to write this guide.

And a final thanks to Brian Sawyer and all the people at O’Reilly for their work putting
this guide together!

viii | Preface

CHAPTER 1

Introduction

If you’re expecting a run-of-the-mill best practices manual, be aware that there’s an
ulterior message that will be running through this one. While the primary goal is cer-
tainly to give you the information you need to create accessible EPUB 3 publications,
it also seeks to address the question of why you need to pay attention to the quality of
your data, and how accessible data and general good data practices are more tightly
entwined than you might think.

Accessibility is not a feel-good consideration that can be deferred to republishers to fill
in for you as you focus on print and quick-and-dirty ebooks, but a content imperative
vital to your survival in the digital future, as I’ll take the odd detour from the planned
route to point out. Your data matters, not just its presentation, and the more you see
the value in it the more sense it will make to build in accessibility from the ground up.

It’s a common misconception, for example, that any kind of data is accessible data, and
that assistive technologies like screen readers work magic and absolve you of paying
attention to what’s going on “under the hood,” so to speak. Getting the message out
early that this is not the case is essential to making EPUB more than just a minimally
accessible format and preventing past mistakes from being perpetuated.

It’s unfortunately too easy when moving from a visual medium like print to treat digital
content as nothing more than yet another display medium, however. The simple path
is to graft what you know onto what you don’t. But it’s that thinking that perpetuates
the inaccessibility of content. Everything starts with the source. All the bells and whis-
tles your reading system can do for you to assist in rendering and playback ultimately
rely on the value of the content underneath and the ability to make sense of it.

Treat your data as a second-class citizen and eventually you’ll be recognized as a second-
class publisher.

But try and turn your brain off to the word accessibility as you read this guide and focus
instead on the need to create rich, flexible, and versatile content that can make the
reading experience better for everyone.

1

 

Inaccessible content typically means you’re settling for the least value you can get, so
get ready to think bigger.

The Digital Famine
Before getting into the best practices themselves, there are two subjects that it would
be a lapse for me to not talk about first. The digital famine is the first, as it will hopefully
give you some real-world perspective on why accessibility matters.

You’re probably wondering what the famine is, since there are some impressive statis-
tics emerging to show that the ebook revolution isn’t slowing down any time soon.
Unfortunately, the numbers aren’t where it matters most yet if you believe in universal
access to information. Sales are rising exponentially year over year, but the number of
accessible ebooks available at the source is still small.

A commonly cited statistic in accessibility circles is that only about 5 percent of the
books produced in any year are ever made available in an accessible format. Although
there are signs that this rate is beginning to tick upward with more ebooks being pro-
duced, the overall percentage of books that become available in accessible formats still
remains abysmally small. Fiction bestsellers are a bright spot, as they’ve been the first
to receive the digital treatment, but there’s more to reading than just fiction.

Picture yourself in the situation where you’ll only ever have a spattering of books at
your fingertips in any given subject area, and probably none in the more niche topics
you delve into. It’s not a matter of finding another bookstore or reading application;
those books just aren’t coming and there’s nothing you can do to change it. This dearth
of content is what people refer to as the digital famine.

Not a pleasant thought, and it’s a reality that many people are forced to live right now;
it’s only imaginary if you’re fortunate not to be affected. The ebook revolution holds
out the promise of improvement, as mainstream publishing finds itself suddenly chart-
ing the same path as accessible producers, but there are still a number of factors that
will contribute to this paltry number for some time to come, including:

•		 New workflows haven’t yet emerged to facilitate the transition. Mass retail ebook
production and consumption took many people by surprise, the author included,
after earlier failed attempts. Tools and production systems are not optimized for
high-quality multi-stream output production, making internal conversion of print
to digital costly.

•		 Accessible ebooks can become inaccessible after ingestion into a distribution chan-
nel, whether via reformatting to less feature-rich formats or for feature-reduced
reading.

•		 The inaccessibility of online bookstores themselves can hinder the ability to obtain
ebooks.

2	 | Chapter 1: Introduction

•		 Libraries for the blind and other republishers don’t have the resources to com-
pletely re-engineer the print-only books still being produced. And this model is a
failing one for the long-term ideal of full content accessibility.

But, while depressing in the short term, none of these issues are insurmountable, and
none are antithetical to producing good content. It’s only to say that there are inter-
esting times ahead, and to reinforce that there remains much still to be done. The
existence of EPUB 3 alone does not cure this famine.

Accessibility and Usability
The other subject that needs treatment is what is meant by accessibility and usability in
the context of this guide. These two terms are often used in overlapping fashion, and
can mean different things to different people, but I’ll be using the following definitions:

Accessibility of content is the intrinsic capabilities of the EPUB 3 publication: the qual-
ity of the data and meaning that can be extracted from it; the built-in navigational
capabilities; the additional functionality, like text and audio synchronization (media
overlays) and improved synthetic speech. The publisher of an EPUB has control over
the accessibility of their publication, whether directly through the tools they use to
generate the source or in post-production workflows.

Usability is the ability of a reader to access the content on any given reading system. A
publisher may make an EPUB 3 publication rich with accessibility features, but if a
reader does not have the right device or software program to access those features it is
not the publication itself that is to blame.

But even making these distinctions, there’s no simple answer to what a fully accessible
EPUB is, or to what a completely usable reading system is. It means something different
depending on your needs.

A person with a print disability, for example, “cannot effectively read print because of
a visual, physical, perceptual, developmental, cognitive, or learning disability” (DAISY
Glossary). The best method to address any one of these areas is not necessarily the best
method to address any of the others. Audio is necessary for readers who are blind, for
example, but a reader who is dyslexic might benefit from audio, or from font changes
or visual cues, or from a combination of these. There’s no universal answer.

And with EPUB 3 opening the door to new rich multimedia experiences, so too do you
need to think beyond traditional print disabilities and recognize that ebooks have the
potential to exclude a greater segment of the population if not done with care:

•		 the inability to hear embedded audio and video is a concern for persons who are
deaf or hard or hearing;

•		 interactivity and animations that rely on color recognition have the potential to
exclude persons who are color blind or have difficulty distinguishing blended con-
trasts;

Accessibility and Usability | 3

http://www.daisy.org/glossary/12#term325
http://www.daisy.org/glossary/12#term325

 

•		 the new trend to voice activated devices has the potential to make reading for
persons with speech impairments difficult.

The point isn’t to suggest that the problem is too big to try and tackle, in fact the
opposite. If you haven’t caught on, I’m making the case why ignoring accessibility
means ignoring a large segment of readers who would love to be buying and consuming
your ebooks. It is estimated that 10 percent of the population has a print disability;
that’s a large market you could be catering to to increase your sales.

And we haven’t yet touched on situational disabilities. A situational disability is one in
which a person who would otherwise be able to interact with your ebook is in a position
in which they can’t, or find themselves facing the same limitations. For example:

•		 someone trying to read on a cell phone will gain an appreciation for the difficulty
of reading small sections of prose at a time, as someone with low vision experiences
when reading using zooming software;

•		 someone attempting to read on their deck on a bright summer day, angling and
holding their tablet close to their face to follow the prose, will understand the
difficulty experienced by someone with age-related sight loss and/or who has trou-
ble with contrasts;

•		 someone sitting on the subway going home who has to turn on subtitles in an
embedded video to read the dialogue will experience how a person who is deaf
interacts with the video.

In other words, everyone will benefit from accessible data at some point in their lives,
as there are a lot of ways accessible data improves access that aren’t always immediately
obvious. Accessibility is critical for some and universally beneficial for all.

The richer you make your data the more intelligently it can be used; so even though
you may not be able to accommodate everyone at the end of the day, you can go a long
way toward accommodating the majority with a number of simple measures. And that
is the focus of this guide.

Usability as defined here, however, is outside the realm of content production, and
can’t be tackled by a guide whose focus is increasing the quality of your content. The
EPUB specification bakes in some requirements on the reading system side to improve
usability, but not every reading system is going to support every accessible feature, and
usability is not just support for EPUB but extends into the design of reading systems
themselves.

You can’t let usability influence your accessibility decision making, however. A typical
practice is to target the industry-leading platform and build around its capabilities (and
deficiencies), but what value does this bring you in the long term? Think of the cost
that resulted from making Internet Explorer-only friendly websites when it held 90 plus
percent of the market as an example of where following the leader can take you. Your
books will hopefully be selling well for years to come, but unless you enjoy reformatting

4	 | Chapter 1: Introduction

from scratch each time you look to upgrade or enhance, it pays to put the effort into
doing them right up front.

But it’s time to roll up our sleeves and get our hands dirty…

Accessibility and Usability | 5

CHAPTER 2

Building a Better EPUB: Fundamental
Accessibility

This guide takes a slightly different approach to accessibility because of the feature-rich
nature of EPUB 3. Instead of grouping all the practices together under a single rubric
of essentiality, I’m going to instead take a two-tier approach to making your content
accessible.

This first section deals with the core text and image EPUB basics, while the second
ventures into the wilder areas, like scripting and the new accessible superstructures you
can build on top.

I’m going to start with a section on the fundamentals of accessible content, naturally
enough, because if you get your foundation wrong, everything else degrades along with
it.

A Solid Foundation: Structure and Semantics
The way to begin a discussion on the importance of structure and semantics is not by
jumping into a series of seemingly detached best practices for markup, but to stop for
a moment to understand what these terms actually mean and why they’re so important
to making data accessible. We’ll get to the guidelines soon enough, but if you don’t
know why structure and semantics matter, you’re already on the fast track to falling
into the kinds of bad habits that make digital data inaccessible, no matter the format.

Although the terms are fairly ubiquitous when it comes to discussing markup languages
and data modeling generally—because they are so important to the quality of your data
and your ability to do fantastic-seeming things with it—they are often bandied about
in ways that make them sound geeky and inaccessible to all but data architects. I’m
going to try and make them more accessible in showing how they facilitate reading for
everyone, however.

7

 

Let’s start simple, though. You’re probably used to hearing the terms defined along
these lines: structure is the elements you use to craft your EPUB content, and seman-
tics is the additional meaning you can layer on top of those structures to better indicate
what they represent.

But that’s undoubtedly a bit esoteric if you don’t go mucking around in your markup
on a regular basis, so let’s take a more descriptive approach to their meaning. Another
way to think about their importance and relationship is via a little reformulation of
Plato’s allegory of the cave. In this dialogue, if you’ve forgotten your undergrad Greek
philosophy, Socrates describes how the prisoners in the cave can only see shadows of
the true forms of things on the walls as they pass in front of a fire, and only the phi-
losopher kings will eventually break free of the chains that bind them in ignorance and
come to see the reality of those forms.

As we reformulate Plato, the concept of generalized and specific forms is all that you
need to take away from the original allegory, as getting from generalized to specific is
the key to semantic markup. In the new content world view I’m proposing, the elements
you use to mark up a document represent the generalized reflection of the reality you
are trying to express. At the shadow level, so to speak, a chapter and a part and an
introduction and an epilogue and many other structures in a book all function in the
same way, like encapsulated containers of structurally significant content.

These general forms allow markup grammars, like HTML5, to be created without el-
ement counts in the thousands to address every possible need. A generalized element
retains the form of greatest applicability at the expense of specifics, in other words. The
HTML5 grammar, for example, solves the problem of a multitude of structural con-
tainers with only slightly differing purposes by introducing the section element.

But what help is generalized markup to a person, let alone a reading system, let alone
to an assistive technology trying to use the markup to facilitate reading? Try making
sense of a markup file by reading just the element names and see how far you get; a
reading system isn’t going to fare any better despite a developer’s best efforts. HTML5
may now allow you to group related content in a section element, for example, but
without reading the prose for clues all you know is that you’ve encountered a seemingly
random group of content called section. This is structure without semantics.

You might think to make out the importance of the content by sneaking a peek ahead
at the section’s heading—assuming it has one—but unless the heading contains some
keyword like “part” or “chapter” you still won’t know why the section was added or
how the content is important to the ebook as a whole. And cheating really isn’t fair, as
making applications perform heuristic tests like looking at content can be no small
challenge. This is both the power and failing of trying to process generalized markup
languages and do meaningful things with what you find: you don’t have to account for
a lot, but you also don’t often get a lot to work with.

Getting back to our analogy, though, it’s fair to say we’re all philosopher kings when
it comes to the true nature of books; we aren’t typically interested in, and don’t typically

8 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

notice, generalized forms when reading. But, whether we realize it or not, we rely on
our reading systems being able to make sense of these structures to facilitate our read-
ing, and much more so when deprived of sensory interactions with the device and
content. When ebooks contain only generalized structures, reading systems are limited
to presenting only the basic visual form of the book. Dumb data makes for dumb read-
ing experiences, as reading systems cannot play the necessary role of facilitator when
given little-to-nothing to work with. And that’s why not everyone can read all digital
content.

It’s not always obvious to sighted readers at this point why semantics are important for
them, though, as they just expect to see the visual presentation the forms provide and
to navigate around with fingers and eyes. But that’s also because no one yet expects
more from their digital reading experience than what they were accustomed to in print.
Knowing whether a section is a chapter or a part as you skip forward through your
ebook can make it so you don’t always have to rely on opening the table of contents.
Knowing where the body matter section begins can allow a reading system to jump you
immediately to the beginning of the story instead of the first page of front matter.
Knowing where the body ends and back matter begins could allow the reading system
to provide the option to close the ebook and go back to your bookshelf; it might also
allow links to related titles you might be interested in reading next to be displayed.
Without semantically rich data, only the most rudimentary actions are possible. With
it, the possibilities for all readers are endless.

So, to wrap up the analogy, while some of us can read in the shadow world of gener-
alized markup, all we get when we aim that low is an experience that pales to what it
could be, and one that needlessly introduces barriers to access. If I’ve succeeded in
bringing these terms into relief, you can hopefully now appreciate better why semantics
and structure have to be applied in harmony to get the most value from your data. The
accessibility of your ebook is very much a reflection of the effort you put into it. The
reading system may be where the magic unfolds for the reader, but all data magic starts
with the quality of the source.

With that bit of high-level knowledge under our belts, let’s now turn to how the two
work together in practice in EPUB 3 to make content richer and more accessible.

Data Integrity
The most important rule to remember when structuring your content is to use the right
element for the right job. It seems like an obvious statement, but too often people settle
for the quick solution without thinking about its impact; look no further than the Web
for examples of markup run amok. Print to digital exports are also notorious for taking
the path of least complexity (p-soup, as I like to call the output that wraps most every-
thing in paragraph tags). In fairness, though, print layout programs typically lack the
information necessary for the export to be anything more than rudimentary.

A Solid Foundation: Structure and Semantics | 9

 

When present, however, reading systems and assistive technologies are able to take
advantage of specialized tags to do the right thing for you, but there’s little they can do
if you don’t give them any sense of what they’re encountering.

When it comes to EPUB 3, if you don’t know what’s changed in the new HTML spec-
ification, go and read the element definitions through; it’s worth the time. EPUB 3 uses
the XHTML flavor of HTML5 for expressing text content documents, so knowledge
of the specification is critical to creating good data. Don’t assume knowledge from
HTML4, as the purpose of many elements has changed, and elements you thought you
knew might have different semantic meanings now (especially the old inline formatting
elements like i, b, small, etc.).

And remember that structure is not about what you want an element to mean. The
changes to the HTML5 element definitions may not always make the most sense (see
the human restriction on the cite element as one commonly cited example), but twist-
ing definitions and uses to fit your own desires isn’t going to make you a friend of
accessibility, either. Reading systems and assistive technologies are developed around
the common conventions.

And whatever you do, don’t perpetuate the sin of immediately wrapping div and
span tags around any content you don’t know how to handle. It’s a violation of the
EPUB 3 specification to create content that uses generic elements in place of more
specific ones, and it doesn’t take long to check if there really is no other alternative first.
When you make up your own structures using generic tags, you push the logical nav-
igation and comprehension of those custom structures onto the reader (and potentially
mess up the HTML5 outline used for navigation). Sighted readers may not notice any-
thing, but when reading flows through the markup, convoluted structures can frustrate
the reader and interfere with their ability to effectively follow the narrative flow.

If you don’t discover an existing element that fits your need, the process of checking
will typically reveal that you’re not alone in your problem, and that community-driven
solutions have been developed. Standards and conventions are the friend of accessi-
bility. And if you really don’t know and can’t find an answer, ask. The IDPF maintains
discussion forums where you can seek assistance.

There are, of course, going to be many times when you have no choice but to use a
generic tag, but when you do, always try to attach an epub:type attribute with a specific
semantic (we’ll cover this attribute in more detail shortly). The more information you
can provide, the more useful your data will be.

Take the converse situation into consideration when creating your content, too. You
aren’t doing readers a service by finding more, and ever complex, ways to nest simple
structures. The more layers you add the harder it can be to navigate, as I already men-
tioned. Over-analyzing your data can be as detrimental to navigation as under-analyz-
ing.

10 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-xhtml-content-type-attribute
http://idpf.org/forums

For persons who cannot visually navigate your ebook, this basic effort to properly tag
your data reduces many of the obstacles of the digital medium. The ability to skip
structures and escape from them starts with meaningfully tagged data. The ability to
move through a document without going to a table of contents starts with meaningfully
tagged data.

Skipping and escaping are terms that will come up repeatedly in this
guide. Skipping, as you might expect, is the ability to ignore elements
completely, to skip by them. Accessible reading systems typically pro-
vide the ability for the reader to specify the constructs they wish to ig-
nore, such as sidebars, notes, and page numbers. Escapable content
typically consists of deep-nested or repetitive structures—such as found
in tables and lists—that a user may wish to move out from in order to
continue reading at the next available item following the escaped con-
tent (a reading system’s user interface would normally provide quick
access to the “escape” command, so that the operation can easily be
called repetitively, if needed).

The integrity of your data is also a basic value proposition. Do you expect to throw
away your content and start over every time you need to re-issue, or do you want to
retain it and be able to easily upgrade it over time? Structurally meaningful data is
critical to the long-term archivability of your ebooks, the ability to easily enhance and
release new versions as technology progresses, as well as your ability to interchange
your data and use it to create other outputs. Start making bad data now and expect to
be paying for your mistakes later.

Separation of Style
Some old lessons have to be continuously relearned and reinforced, and not mixing
content and style is a familiar friend to revisit whenever talking about accessible data.

To be clear, separating style does not mean avoiding the style attribute and putting all
your CSS in a separate file, even if that is another good practice we’ll get back to. What
separation of style refers to is not expecting the visual appearance of your content to
convey meaning to readers. Style is just a layer between your markup and the device
that renders it, not an intrinsic quality you can rely on to say anything about your
content. Typographic conventions had to convey meaning in print because that was all
that was available, and are still useful for sighted readers, but are the wrong place now
to be carrying meaning.

Some reading systems will give you the full power of CSS, while others won’t even have
a screen for reading. Some readers will visually read your content, while others will be
using nonvisual methods. If only the visual rendering of your content conveys meaning
to the reader, you’re failing a major accessibility test. Leave style in that in-between

A Solid Foundation: Structure and Semantics | 11

 

layer where it targets visual readers, and keep your focus on the quality of your markup
so that everyone wins.

The most basic rule of thumb to remember is that if you remove the CSS from your
ebook, you should still be able to extract the same meaning from it as though nothing
had changed. Your markup is what should ultimately be conveying your meaning. If
you rely solely on position or color or whatever other stylistic flair you might devise,
you’re taking away the ability of a segment of your readers to understand the content.

But there is something to be said for cleanly separating content from style at the file
level, too. The cascading nature of styles means that the declaration closest to the ele-
ment to be rendered wins. If you tack style attributes all over your content you can
interfere with the ability of a reader to apply an alternate style sheet to improve the
contrast, for example, or to change the color scheme, as the local definition may over-
ride the problem the reader is attempting to fix. Consequently, suggesting that you
avoid the style attribute like the plague is actually not an overstatement.

More realistically, though, you should be able to use CSS classes for your needs. If, for
some reason, you do have to add a style attribute, though, avoid using it to apply
general stylistic formatting. Keeping your style definitions in a separate file simplifies
their maintenance and facilitates their re-use on the production side, anyway, and this
simple standard practice nets you an accessibility benefit.

Semantic Inflection
I’m not going to rehash the reasons for semantic markup again, but I intentionally
neglected getting into the specifics of how they’re added in EPUB 3 until now so as not
to confuse the need with the technical details.

Adding semantic information to elements is actually quite simple to do; EPUB 3 in-
cludes the epub:type attribute for this purpose. You can attach this attribute to any
HTML5 element so long as you declare the epub namespace. The following example
uses the attribute to indicate that a dl element represents a glossary:

<html … xmlns:epub="http://www.idpf.org/2007/ops">
 …
 <dl epub:type="glossary">

 <dt><dfn>Brimstone</dfn></dt>
 <dd>Sulphur; See Sulphur.</dd>

 </dl>
 …

</html>

Whenever you use unprefixed values in the attribute (i.e., without a colon in the name),
they must be defined in the EPUB 3 Structural Semantics Vocabulary. All other values
require a defined prefix and are typically expected to be drawn from industry-standard
vocabularies. In other words, you cannot add random values to this attribute, like you
can with the class attribute.

12 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

http://idpf.org/epub/vocab/structure/

You can create your own prefix, however, and use it to devise any semantics you want,
but don’t create these kinds of custom semantics with the expectation they will have
an effect on the accessibility or usability of your ebook. Reading systems ignore all
semantics they don’t understand and don’t have built-in processing for. It would be
better to work with the IDPF or other interested groups to create a vocabulary that
meets your needs if you can’t locate the semantics you need, as you’re more likely to
get reading system support that way.

The attribute is not limited to defining a single semantic, either. You can include a
space-separated list of all the applicable semantics in the attribute.

A section, for example, often may have more than one semantic associated with it:

<section epub:type="toc backmatter">
 …

</section>

The order in which you add semantics to the attribute does not infer importance or
affect accessibility, so the above could have just as meaningfully been reversed.

You should also be aware that this attribute is only available to augment structures; it
is not intended for semantic enrichment of your content. Associating the personal in-
formation about an individual contained in a book so that a complete picture of their
life can be built by metadata querying, for example, is not yet possible. The metadata
landscape was considered too unstable to pick a method for enriching data, but look
for a future revision to include this ability, whether via RDFa, microdata, or another
method.

And in case it needs repeating, semantics are not just an exercise in labeling elements.
As I discussed in the introduction to this section, these semantics are what enable
intelligent reading experiences. If you had 25 definition lists in an ebook each with a
particular use, how would a reading system determine which one represents the glos-
sary if you didn’t have a semantic applied as in the first example? If you know which
is the glossary, you could provide fast term lookups. The easier you make it for machines
to analyze and process your data, the more valuable it becomes.

Language
Although the global language for the publication is set in the EPUB package file met-
adata, it’s still a good practice to specify the language in each of your content docu-
ments. In an age of cloud readers, assistive technologies might not have access to the
default language if you don’t (unless they rewrite your content file to include the in-
formation in the package document, which is a bad assumption to make). Without the
default language, you can impact on the ability of the assistive technology to properly
render text-to-speech playback and on how refreshable braille displays render charac-
ters.

A Solid Foundation: Structure and Semantics | 13

 

An xml:lang attribute on the root html element is all it takes to globally specify the
language in XHTML content documents. For compatibility purposes, however, you
should also include the HTML lang attribute. Both attributes must specify the same
value when they’re used.

We could indicate that a document is in German as follows:

<html … xml:lang="de" lang="de">

Similarly, for SVG documents, we add the xml:lang attribute to indicate that the title,
description, and other text elements are in French:

<svg … xml:lang="fr">

You should also clearly identify any prose within your book that is in a different lan-
guage from the publication:

<p>She had an infectious <i xml:lang="fr" lang="fr">joie de vivre</i> mixed with a
 certain <i xml:lang="fr" lang="fr">je ne sais quoi</i>.</p>

The xml:lang attribute can be attached to any element in your XHTML content docu-
ments (and the lang attribute is again included for compatibility). Properly indicating
when language of words, phrases, and passages changes allows text-to-speech engines
to voice the words in the correct language and apply the proper lexicon files, as we’ll
return to in more detail in the text-to-speech section.

Logical Reading Order
Although you’ll hear that all EPUB 3s have a default reading order, it’s not necessarily
the same thing as the logical reading order, or primary narrative. The EPUB 3 spine
element in the publication manifest defines the order in which a reading system should
render content files as you move through the publication. This default order enables a
seamless reading experience, even though the publication may be made up of many
individual content files (e.g., one per chapter).

But although the main purpose of the spine is to identify the sequence in which docu-
ments are rendered, you can use it to distinguish primary from auxiliary content files.
The linear attribute can be attached to the child itemref elements to indicate whether
the referenced content file contains primary reading content or not. If a content file
contains auxiliary material that would normally appear at the point of reference, but
is not considered part of the main narrative, it should be indicated as such so that
readers can choose whether to skip it.

For example, if you group all your chapter end notes in a separate content document,
you could indicate their auxiliary status as follows:

<spine>
 …
 <itemref idref="chapter1"/>
 <itemref idref="chapter1-notes" linear="no"/>
 <itemref idref="chapter2"/>

14 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

 <itemref idref="chapter2-notes" linear="no"/>
 …

</spine>

A reader could now ignore these sections and continue following the primary narrative
uninterrupted. But this capability is only a simple measure for distinguishing content
that is primary at the macro level; it’s not effective in terms of distinguishing the primary
narrative flow of the content within any document. (Although in the case of simple
works of fiction that contain only a single unbroken narrative, it might be.)

Sighted readers don’t typically think about the logical reading order within the chapters
and sections of a book, but that’s because they can visually identify the secondary
content and read around it as desired. A reading system, however, doesn’t have this
information to use for the same effect unless you add it (those semantics, again).

As I touched on in keeping style separate from content, you can, for example, give a
sidebar a nice colorful border and offset it from the narrative visually using a div and
CSS, but you’ve limited the information you’re providing to only a select group when
all you use is style. Using a div instead of an aside element means a reading system will
not know by default that it can skip the sidebar if the reader has chosen to only follow
the primary narrative.

For someone listening to the book using a text-to-speech engine, the narrative will be
interrupted and playback of the sidebar div will be initiated when you mis-tag content
in this way. The only solution at the reader’s disposal might be to slowly move forward
until they find the next paragraph that sounds like a continuation of what they were
just listening to (div elements aren’t always escapable). Picture trying to read and keep
a thought with the constant interruptions that can result from sidebars, notes, warnings
and all the various other peripheral text material a book might contain.

For this reason, you need to make sure to properly identify content that is not part of
the primary narrative as such. The aside element is particularly useful when it comes
to marking text that is not of primary importance, but even seemingly small steps like
putting all images and figures in figure tags allows the reader to decide what additional
information they want presented. I’ll be returning to how to tag many of these as we
go, too.

The EPUB 3 Structural Semantics Vocabulary is also a useful reference when it comes
to which semantics and elements to apply to a given structure. Each of the semantics
defined in this vocabulary indicates what HTML element(s) it is intended to be used
in conjunction with.

Sections and Headings
As I touched on in the introduction to this section, always group related content that
is structurally significant in section elements to facilitate navigation, and always indi-
cate why you’ve created the grouping using the epub:type attribute:

A Solid Foundation: Structure and Semantics | 15

http://idpf.org/epub/vocab/structure/

 

<section epub:type="epilogue">
 …

</section>

The entries in the table of contents in your navigation document are all going to be
structurally significant, which can be a helpful guide when it comes to thinking about
how to properly apply the section element. Some additional ideas on structural sig-
nificance can be gleaned from the terms in the EPUB 3 Structural Semantics Vocabu-
lary. For example, a non-exhaustive list of semantics for sectioning content includes:

• foreword

• prologue

• preface

• part

• chapter

• epilogue

• bibliography

• glossary

• index

Semantics are especially helpful when a section does not have a heading. Sighted readers
are used to the visual conventions that distinguish dedications, epigraphs, and other
front matter that may be only of slight interest, for example, and can skip past them.
Someone who can’t see your content has to listen to it if you don’t provide any addi-
tional information to assist them.

Headingless, unidentified content also means the person will have to listen to it long
enough to figure out why it’s even there. Have you just added an epigraph to the start
of your book, and skipping the containing section will take them to the first chapter,
or are they listening to an epigraph that starts the first chapter and skipping the sec
tion will take them to chapter two? These are the impediments you shift onto your
reader when you don’t take care of your data.

When the section does contain a heading, there are two options for tagging: numbered
headings that reflect the current level or h1 headings for every section. At this point in
time, using numbered headings is recommended, as support for navigation via the
structure of the document is still developing:

<section epub:type="part">

 <h1>Part I</h1>

 <section epub:type="chapter">
 <h2>Chapter 1</h2>
 …

 </section>
</section>

16 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

http://idpf.org/epub/vocab/structure/
http://idpf.org/epub/vocab/structure/

Numbered headings will also work better for forward-compatibility with older EPUB
reading systems.

Using an h1 heading regardless of the nesting level of the section will undoubtedly gain
traction moving forward, though. In this case, the h1 becomes more of a generic head-
ing, as traversal of the document will occur via the document outline and not by heading
tags (the construction of this outline is defined in HTML5). There is only limited sup-
port for this method of navigation at this time, however.

It’s also worth briefly noting that the hgroup element should probably
only be used judiciously, if at all, for title and subtitle grouping at this
time. The element is not yet widely supported, and there are a number
of proposals to change it under review as of writing.

And remember that titles are an integral unit of information. If you want to break a title
across multiple lines, change font sizes, or do other stylistic trickery, use spans and CSS
and keep the display in the style layer. Never add multiple heading elements for each
segment. Use span elements if you need to visually change the look and appearance of
headings.

To break a heading across lines, we could use this markup:

<h1>Chapter One Loomings.</h1>

and then add the following CSS class to change the font size of the span and treat it as
a block element (i.e., place the text on a separate line):

span.chapNum {
 display: block;
 margin: 0.5em 0em;
 font-size: 80%

}

If you fragment your data, you fragment the reading experience and cause confusion
for someone trying to piece back together what heading(s) they’ve actually run into.

Context Changes
A nasty side-effect of current print-based export processes is that changes in context
are visually styled either using CSS and/or with images. When you use the CSS margin-
top property to add spacing, you’re taking away from anyone who can’t see the display
that a change in context has occurred. Graphics to add whitespace are no better, since
they don’t typically specify an alt value and are ignored by accessible technologies.
Graphics that include asterisms or similar as the alt text are slightly better, but are still
a suboptimal approach in that they don’t convey any meaning except through the
reading of the alt value.

A Solid Foundation: Structure and Semantics | 17

http://dev.w3.org/html5/spec/Overview.html#outlines
http://dev.w3.org/html5/status/issue-status.html#ISSUE-164

 

There are people who would argue that context breaks represent the borders between
untitled subsections within sections, but from a structural and navigational perspective
it’s typically not true or wanted, so don’t be too tempted to add section elements.

HTML5 has, in fact, addressed this need for a transitioning element by changing the
semantics of the hr element for this purpose:

<p>… the world swam and disappeared into darkness.</p>

<hr class="transition"/>

<p class="nonindent">When next we met …</p>

By default this tag would include a horizontal rule, but you can use CSS to turn off the
effect and leave a more traditional space for visual viewing:

hr.transition {
 width: 0em;
 margin: 0.5em 0em;

}

or you could add a fleuron or other ornament:

hr.transition {
 background: url('img/fleuron.gif') no-repeat 50% 50%;
 height: 1em;
 margin: 0.5em 0em;

}

Styling the hr element ensures that the context change isn’t lost in the rush to be visually
appealing.

Lists
You’d typically not expect to have to hear the advice that you should use lists for sets
of related items, but rely too heavily on print tools to create your content and the result
will be paragraphs made to look like list items, or single paragraphs that merge all the
items together using only br tags to separate them.

If you don’t use proper list structures, readers can get stuck having to traverse the entire
set of items before they can continue with the narrative flow (in the case of one para-
graph per item) or having to listen to every item in full to hear the list (when br tags are
used).

A list element, on the other hand, provides the ability both to move quickly from item
to item and to escape the list entirely. It also allows a reading system to inform a reader
how many items are in the list and which one they are at for referencing. Picture a list
with tens or hundreds of items and you’ll get a sense for why this functionality is critical.

Using paragraphs for lists also leads people to resort to visual trickery with margins to
emulate the deeper indentation that a nested list would have. These kinds of illusions

18 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

take away from all but sighted readers that there exists a hierarchical relationship. The
correct tagging allows readers to navigate the various levels with ease.

A final note is to always use the right kind of list:

•		 the ol element is used when the order of the items is important.

•		 the ul element is used when there is no significance or weak significance to the
items (e.g., just because you arrange items alphabetically does not impart meaning
to the order).

•		 the dl element is used to define terms, mark up glossaries, etc.

Lists have these semantics for good purpose, so don’t use CSS to play visual games with
them.

Tables
The reflowable, paginated nature of ebook reading has fortunately kept tables from
being used for presentational purposes in ebooks. In theory, this should have been a
good thing. The complex nature of tables relative to limited rendering area of typical
reading systems has led to the worse practice of excluding the data in favor of images
of the table, however. How helpful is a picture of data to someone who cannot see it?

The motivating hope behind this practice seems to be that images will take away ren-
dering issues on small screens, but don’t fall into this trap. Not only are you taking the
content away from readers who can’t see the table, but even if you can see the images
they often get scaled down to illegibility and/or burst out the side of the reading area
on the devices that this technique is presumably meant to enhance the tables on (no-
tably eInk readers that have no zooming functionality).

Consider also what you’re doing when you add a picture: you’re trying to address a
situational disability (the inability to view an entire table at once) by creating another
disability (only limited visual access to the content). If you properly mark up your data,
readers can find ways to navigate it, whether via synthetic speech or other accessible
navigation mechanisms. Obsessing about appearance is natural, but ask yourself how
realistic a concern it should be when people read on cellphone screens? Give your
readers credit to understand the limitations their devices impose, and give them the
flexibility to find other ways to read.

When it comes to marking up tables, the fundamental advice for making them acces-
sible from web iterations past remains true:

•		 Always use th elements for header cells.

•		 Wrap your header in a thead, in particular when including multi-row headings.

•		 Use the th scope attribute to give the applicability of the heading (e.g., whether to
the row or column). This attribute is not necessary for simple tables where the first

A Solid Foundation: Structure and Semantics | 19

 

row of th elements, or a th cell at the start of each row, defines the header(s),
however.

•		 If the header for a cell cannot be easily determined by its context, and especially
when multiple cells in a multi-row header apply, add the headers attribute and
point to the appropriate th element(s).

These heading requirements allow a person navigating your table to quickly determine
what they’re reading at any given point in it, which is the biggest challenge that tables
pose outside of perhaps escaping from them. It’s easy to get lost in a sea of numbers,
otherwise.

The following example shows how these practices could be applied to a table of baseball
statistics:

<table>

 <caption>1927 New York Yankees</caption>

 <thead>

 <tr>

 <th rowspan="2">Player</th>

 <th id="reg-hd" colspan="3">Regular Season</th>

 <th id="post-hd" colspan="3">Post Season</th>

 </tr>
 <tr>

 <th id="reg-ab">At Bats</th>

 <th id="reg-hits">Hits</th>

 <th id="reg-avg">Average</th>

 <th id="post-ab">At Bats</th>

 <th id="post-hits">Hits</th>

 <th id="post-avg">Average</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>Lou Gehrig</td>

 <td headers="reg-hd reg-ab">584</td>

 <td headers="reg-hd reg-hits">218</td>

 <td headers="reg-hd reg-avg">.373</td>

 <td headers="post-hd post-ab">13</td>

 <td headers="post-hd post-hits">4</td>

 <td headers="post-hd post-avg">.308</td>

 </tr>

 </tbody>

</table>

The headers attribute on the td cells identifies both whether the cell contains a “Regular
Season” or “Post Season” statistic as well as the particular kind of stat from the second
header row. The value of this tagging is that a reading system or assistive technology
can now announce to the reader that they are looking at “regular season hits” when
presented the data for the third column, for example.

There’s also no reason why this functionality can’t be equally useful to sighted readers,
except that it’s rarely made available. We just talked about the problem of visually

20 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

rendering table data on small screens, and there’s an obvious solution here to the prob-
lem a sighted reader will have of seeing perhaps only a few cells at a time and not having
the visual context of what they’re looking at. But whether mainstream devices begin
taking advantage of this information to solve these problems remains to be seen.

It’s also good practice to provide a summary of complex tables to orient readers to their
structure and purpose in advance, but the summary attribute has been dropped from
HTML5. This loss is slightly less objectionable than the longdesc attribute removal
we’ll touch on when we get to images, as prose attributes have many limitations—from
expressivity to international language support.

The problem is that HTML5 doesn’t replace these removals with any mechanism(s) to
allow the discovery of the same information, instead deferring to the aria-descri
bedby attribute to point to the information (see the scripting section for more on WAI-
ARIA). This attribute, however, may make the information even less generally discov-
erable to the broader accessibility community, as only persons using accessible tech-
nologies will easily find it.

The proposed HTML5 solutions for adding summaries, like using the caption element,
also don’t take into account the need to predictably find this information before pre-
senting the table. The information can’t be in any of a number of different places with
the onus on the person reading the content to find it.

But throwing our collective hands up in the air isn’t a viable solution, either. The
details element could work as a non-intrusive mechanism for including descriptions,
at least until a better solution comes along. This element functions like a declarative
show/hide box. Unfortunately, it suffers from a lack of semantic information that the
epub:type attribute cannot currently remedy (i.e., there are no terms available for iden-
tifying whether the element contains a summary or description or something else). We
instead have to use a child summary element to carry a prose title, as in the following
example:

<details>
 <summary>Summary</summary>
 <p>…</p>

</details>

(The value of the summary element represents the clickable text used to expand/close
the field and can be whatever you choose.)

If we then take a small liberty with the meaning of the aria-describedby attribute to
also include summary descriptions, we could reformulate the HTML5 specification
example to include an explicit pointer to the details element:

<table aria-describedby="tbl01-summary">
 <caption>

 Characteristics with positive and negative sides.
 <details id="tbl01-summary">

 <summary>Summary</summary>
 <p>Characteristics are given in the second column…</p>

A Solid Foundation: Structure and Semantics | 21

 

 </details>
 </caption>
 …

</table>

In this markup, a nonvisual reader can now find the summary when encountering the
table, while a sighted reader will only be presented the option of whether to expand
the details element. It may not prove a great solution in the long run, but until the
landscape settles it’s the best on offer.

Figures
Coming up for a quick breath of fresh air before descending into another accessibility
attribute pain point, HTML5 introduces the handy new figure element for encapsu-
lating content associated with an image, table, or code example. Grouping related con-
tent elements together, as is becoming an old theme now, makes it simpler for a reader
to navigate and understand your content:

<figure>

 <figcaption>

 Figure 3.7 — The blob is digesting Steve McQueen in this
 unreleased ending to the classic movie.

 </figcaption>
</figure>

Unfortunately, there is little support for these two new elements at this time, so they
get treated as no better than div elements. That said, it’s still preferable to future-proof
your data and do the right thing, as support will catch up, especially since the only
other alternative is semantically meaningless div elements.

Images
Images present a challenge for a variety of disabilities, and the means of handling them
are not new, but HTML5 has added a new barrier in taking away the longdesc attribute
for out-of-band descriptions. Like I talked about for tables, you’re now left to find ways
to incorporate your accessible descriptions in the content of your document.

If only to keep consistent with the earlier suggestion for tables, wrapping the img ele-
ment in a figure and using a details element as a child of the figcaption may suit your
needs, as shown in the following example:

<figure aria-describedby="fig01-desc">

 <figcaption>

 Figure 3.7 — The blob is digesting Steve McQueen in
 this unreleased ending to the classic movie.
 <details id="fig01-desc">

 <summary>Description</summary>
 <p>

 In the photo, Steve McQueen can be seen floating within the

22 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

 gelatinous body of the blob as it moves down the main

 street …

 </p>

 </details>

 </figcaption>

</figure>

Another option is to include a hyperlinked text label to your long description:

<figure>
 <p>Description</p>

 <figcaption>

 Figure 3.7 — The blob is digesting Steve McQueen in this
 unreleased ending to the classic movie.

 </figcaption>
</figure>

which would allow the accessible description to live external to the content. You’ll
notice I haven’t added an aria-describedby attribute to this example because only the
prose of the associated element gets presented to a reader using an assistive technology.
In this case, the word “Description” would be announced, but the reader would not
be presented with the option to link to the description.

Continuing to make the case for longdesc, or a better equivalent alternative, is the best
course of action, however.

But that muckiness aside, it’s much more pleasant to note that the alt attribute has not
changed, even if confusion around its use still abounds. The alt attribute is not a short
description; it’s intended to provide a text equivalent that can replace the image for
people for whom the image is not accessible.

Best practices for writing the alternative text extend beyond what we can realistically
cover in a guide about EPUB 3, and resources can be easily located on the Web if you’re
not clear about the distinction between an alt text and description. A good free reference
written by Jukka Korpela is available at http://www.cs.tut.fi/~jkorpela/html/alt.html

Of particular note for accessible practices, however, is that even though the alt attribute
always has to be present on images, it does not always have to contain a text alternative:

This little fact often gets overlooked. If you add text to an alt attribute, you’re indicating
that the image is meaningful to the content and requesting that the reader pay attention
to it. Images that only exist to make content look pretty should include empty alt
attributes, as that allows reading systems and assistive technologies to skip readers past
them without interrupting their reading experience.

SVG
Rounding out the tour of image functionality is SVG. It comes up for debate every so
often just how accessible SVG really is, and while you can argue that it can be more

A Solid Foundation: Structure and Semantics | 23

http://www.cs.tut.fi/~jkorpela/html/alt.html

 

accessible than non-XML formats like JPEG and PNG, there’s no blanket statement
like “SVG is completely accessible” that can be applied. Like all content, an SVG is only
as accessible as you make it, and when you start scripting one, for example, you can
fall into all the typical inaccessibility traps.

The advantages of SVG for accessibility are noteworthy, though. You can scale SVG
images without the need for specialized zoom software (and without the typical pixe-
lation effect that occurs when zooming raster formats), the images are accessible tech-
nology-friendly when it comes to scripting and can be augmented by WAI-ARIA, and
you can add a title and a description directly to the markup without resorting to the
messy techniques the img element requires:

<svg:svg xmlns:svg="http://www.w3.org/2000/svg">
 <svg:title>Figure 1.1, The Hydrologic Cycle</svg:title>
 <svg:desc>

 The diagram shows the processes of evaporation, condensation,
 evapotranspiration, water storage in ice and snow, and
 precipitation. …

 </svg:desc>
 …

</svg:svg>

Note that the SVG working group also provides a guide to making accessible SVGs that
should also be consulted when creating content: http://www.w3.org/TR/SVG-access/

The accessibility hooks are also why SVG has been promoted up to a first-class content
format (i.e., your ebook can contain only SVG images; they don’t have to be embedded
in XHTML files). But if you are going to go with an image-only ebook, the quality of
your descriptions is going to be paramount, as they will have to tell the story that is lost
in your visual imagery. And to be frank, sometimes descriptions will simply fail to
capture the richness and complexity of your content, in which case fallback text seri-
alizations should be considered.

MathML
Why is MathML important for accessibility? Consider the following simple description
of an equation: the square root of a over b. If you hastily added this description to an
image of the corresponding equation, what would you expect a reader who couldn’t
see your image to make of it? Did you mean they should take the square root of a and
divide that by b, or did you mean for them to take the square root of the result of dividing
a by b?

The lack of MathML support until now has resulted in these kinds of ambiguities arising
in the natural language descriptions that accompanied math images. Ideally your au-
thor would describe all their formulas, but the ability to write an equation doesn’t
always translate into the ability to effectively describe it for someone who can’t see it.
And sometimes you have to make do with the resources you have available at hand at

24 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

http://www.w3.org/TR/SVG-access/

the time you generate the ebook, and lacking both academic and description expertise
is a recipe for disaster.

MathML takes the ambiguity out of the equation, as assistive technologies have come
a long way in terms of being able to voice math equations now. There are even Word
plugins that can enable authors to visually create equations for you without having to
know MathML, and tools that can convert LaTeX to MathML. The resources are out
there to support MathML workflows, in other words.

But although EPUB 3 now provides native support for MathML, it is still a good practice
to include an alternate text fallback using the alttext attribute, as not all reading sys-
tems will support voicing of the markup:

<m:math

 xmlns:m="http://www.w3.org/1998/Math/MathML"

 alttext="Frac Root a EndRoot Over b EndFrac">

 <m:mfrac>

 <m:msqrt>
 <m:mtext>a</m:mtext>

 </m:msqrt>

 <m:mi>b</m:mi>

 </m:mfrac>

</m:math>

The preceding description was written in MathSpeak. For more infor-
mation, see the MathSpeak™ Initiative homepage.

If the equation cannot be described within an attribute (e.g., it would surpass the 255
character limit, requires markup elements, like ruby, to fully describe, etc.), it is rec-
ommended that the description be written in XHTML and embedded in an annotation­
xml element as follows:

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

 <m:semantics>

 <m:mfrac>

 …

 </m:mfrac>

 <m:annotation-xml

 encoding="application/xhtml+xml"
 name="alternate-representation">

 Frac Root a EndRoot Over b EndFrac

 </m:annotation-xml>

 </m:semantics>

</m:math>

Note that a semantics element now surrounds the entire equation. This element is
required in order for the addition of the annotation-xml element to be valid.

A Solid Foundation: Structure and Semantics | 25

http://www.gh-mathspeak.com/

 

Footnotes
Footnotes present another challenge to reading enjoyment. Prior to EPUB 3, note ref-
erences could not be easily distinguished from regular hyperlinks, and the notes them-
selves were typically marked up using paragraphs and divs, which impeded the ability
to skip through them or past them entirely.

Picture yourself in a position where you might have to skip a note or two before you
can continue reading after every paragraph. And having to manually listen to each new
paragraph to determine if it’s a note or a continuation of the text. The practice of
clumping all notes at the end of a section is slightly more helpful, but still interferes
with the content flow however you read.

The epub:type attribute helps solve both these problems when used with the new
HTML aside element, as in the following example:

<p>…<a epub:type="noteref" href="#n1">1 …</p>

<aside epub:type="footnote" id="n1">
 …

</aside>

The “noteref” term in the epub:type attribute identifies that the link points to a note,
which allows a reading system to alert the reader they’ve encountered a footnote ref-
erence. It also provides the reader the ability to tell the reading system to ignore all such
links if she wants to read the text through uninterrupted. Don’t underestimate the
irritation factor of constant note links being announced!

Likewise, the aside element has also been identified as a footnote, permitting the read-
ing system to skip it if the reader has chosen to turn off footnote playback. Putting the
note in an aside also indicates that the content is not part of the main document flow.

But footnotes are often a nuisance for all readers; sighted readers typically care just as
little to encounter them in the text. Identifying all your notes could also allow sighted
readers to automatically hide them if they prefer them to not be rendered, saving some-
times limited screen space for the narrative prose. A configurable reading system that
lets you decide what content you want to see is within reach with semantically mean-
ingful data.

Page Numbering
It might seem odd to talk about page numbering in a digital format guide, but ebooks
have been used by students the world over for more than a decade to facilitate their
learning in a world only just weaning itself off print. Picture yourself using an ebook in
a classroom where print books are still used. When the professor instructs everyone to
open their book to a specific page, your ebook will be most unhelpful if you can’t find
the same location. Or think about trying to quote a passage from a novel in your final

26 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

paper and not being able to indicate where in the print source it came from. Page
numbers are not an antiquated concept quite yet.

The practice to date has been to include page numbers using anchor tags, as in the
following example:

But unless a reading system does a heuristic inspection of the name attribute’s value to
see if it starts with “page” or “pg” or “p” there’s not going to be a lot of value to this
kind of tagging for readers. These kinds of anchor points did give a location for navi-
gating from the NCX page list, and it did keep the number from being rendered, but
it’s also lost data.

EPUB 3 once again calls on the epub:type attribute to include better semantics:

361

It’s now clearly stated what the span contains, and the page number no longer has to
be extracted from an attribute and separated from a page identifier label. It’s now up
to the reader and their reading system to determine when and how to render this in-
formation, if at all.

One note when you do include page numbering is to remember that you should also
include the ISBN of the source it came from in the package metadata:

<dc:source>urn:isbn:9780375704024</dc:source>

Inclusion of the ISBN is recommended as it can be used to distinguish between hard-
cover and softcover versions, and between different editions, of the source book. All of
these typically would have different pagination, which would affect the ability of the
reader to accurately synchronize with the print source in use.

This will ensure that students, teachers, professors, and other interested parties can
verify whether the digital edition matches the course criteria. Of course, the ideal day
coming will be when everyone is using digital editions and sharing bookmarks—and
maybe even auto-synchronizing with the professor’s edition.

But there are also other settings beyond educational where page number can be useful,
too. Reading is also a social activity, and being able to reference by page numbers in
leisure books allows for easier participation in reading groups, for example.

The world isn’t completely digital yet, so don’t dismiss out of hand the need for print-
digital referencing when you’re producing both formats for a book.

Getting Around: Navigating an EPUB
We’ve gone over a number of ways to assist in accessible navigation by improving the
structure and semantics of your content, but navigating at the content level is only a
complement to a good table of contents. EPUB 3 includes a new declarative means of

Getting Around: Navigating an EPUB | 27

 

creating tables of contents called the navigation document, which is a fancy way of
saying that you can now create a special kind of XHTML document for reading systems
to provide their own built-in navigation mechanism(s).

Note that the navigation document is not necessarily the same as the
table of contents at the start of the book or at the beginning of a section.
The navigation document is primarily intended for reading system use,
but can also be included as content if it can serve both roles.

Declarative tables of contents are not new to EPUB 3, however. EPUB 2 had a file format
called the NCX for this purpose, which was taken from the DAISY talking book stan-
dard (and that format can still be included in EPUB 3 publications for forwards com-
patibility with older reading systems). But the NCX was a complex solution to a much
simpler problem, and actually hindered accessibility in this new context, as its lack of
intrinsic display controls led to navigation levels being chopped off to improve visual
rendering.

So, to strike back up on a common theme, not all markup is created equal, and the
quality of your table of contents for navigation is a reflection whether you put the full
structure of your publication in it or not. The new navigation document fortunately
gives you the best of both worlds in that it doesn’t require the decision to pick either
visual clarity or full accessibility to be made.

Let’s take a quick tour through the actual creation process to see how this is done for
both reading groups.

The navigation document uses the new HTML5 nav element to define various kinds of
navigation lists, as more than just a table of contents can be included in it. But as a
primary table of contents is required in every EPUB, we’ll begin by looking at a very
minimal example:

<nav epub:type="toc">
 <h1>Contents</h1>

 Chapter 1. Loomings.

 Chapter 2. The Carpet-Bag.

</nav>

The epub:type attribute identifies that this nav element represents the table of contents
(via the “toc” value). But if the rest of the navigation list looks like nothing more than
an ordered list of links, that’s because that’s exactly what navigation lists are. The
nav element should include a heading, but after that it only ever includes a single ol
element.

28 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

Each list item either contains a single link to a location in the content (as shown in the
example above), a link followed by an ordered list of subheadings, or a span element
(a heading) followed by an ordered list of subheadings. That’s really all there is to
building navigation lists.

Let’s take a look at a piece of a more complex table of contents now that we know what
we’re looking at:

<nav epub:type="toc">
 <h1>The Contents</h1>

 SECTION IV FAIRY STORIESMODERN FANTASTIC TALES

 Abram S. Isaacs

 190. A Four-Leaved Clover

 I. The Rabbi and the Diadem

 II. Friendship

</nav>

Here we start with two heading levels, one for the section and another for the author
(as indicated by the span tags that surround the text). We then have the title of the tale
(“A Four-Leaved Clover”), which has additionally been broken down into parts, for a
grand total of four levels of navigable content.

But it’s hard enough to format all these lists for the example, let alone display them in
a reading device without line wrapping getting in the way. This is the point where
aesthetics would win out in the old NCX and the last level would typically be dropped,
since it carries the least structurally-important information. But you’d have also just
sacrificed completeness for visual clarity, an accessibility no-no. It might not seem like
a big issue here, but consider the many levels of depth typical textbooks contain (num-

Getting Around: Navigating an EPUB | 29

 

bered and unnumbered) and how difficult it makes navigating when the structure out-
line is gone.

The HTML5 hidden attribute arrives at this point to save the day. This attribute is the
promised solution to indicating where visual display should end without the require-
ment to remove entries. Since we’ve decided we only want to visually render down to
the level of the tales the author wrote, we can attach the attribute to the ordered list
containing the part links. Removing a couple of levels for clarity, our previous example
would now be tagged as follows:

 190. A Four-Leaved Clover

 <ol hidden="hidden">

 I. The Rabbi and the Diadem

 II. Friendship

Now all a sighted reader will be presented is the linkable name of the tale (the child
ordered lists will be invisible to them), but someone using an assistive technology will
still be able to descend to the part level to move around.

Another advantage of this attribute is that it allows you to selectively decide how to
hide rendering. For example, if your leveling changes from section to section, you aren’t
locked into a single “nothing below level 3” approach to tailoring your content. Only
the ordered lists you attach the attribute to are hidden from view.

Before turning to the other types of navigation lists you can include in the navigation
document, there is one additional accessibility requirement to note. Since the a and
span elements allow all HTML5 inline content, you need to remember not to assume
that their content will always be rendered visually. Or, more to the point, to remember
that your entries might not voice properly if they include images or MathML or similar.

If the prose you include will present a challenge to voice playback, you need to include
a title attribute with an equivalent text rendition to use instead:

The Life of π

Some assistive technologies might voice the pi character in this example as the letter
“p”, for example, which might make sense in a biology book but would be an awk-
wardly confusing title to announce in a math book.

But to move on from the primary table of contents, there are other ways to help readers
navigate your document that are also a benefit to all. The landmarks nav, for example,
can provide quick access to key structures. These can be whatever you want, but jump-
ing to the index, glossaries, and other back matter elements are common tasks the

30 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

readers may want to perform many times while reading. Think of it like a kind of
bookmark list to key structures:

<nav epub:type="landmarks">

 <h1>Guide</h1>

 <a epub:type="toc" href="contents.xhtml#toc">

 Table of Contents

 <a epub:type="bodymatter" href="chapter001.xhtml#bodymatter">
 Start of Content

 <a epub:type="glossary" href="glossary.xhtml#gloss">
 Glossary

 <a epub:type="index" href="index.xhtml#idx">

 Index

</nav>

You’ll notice that, unlike the table of contents example, the a tags have epub:type at-
tributes attached to them to provide machine-readable semantics. The epub:type at-
tribute is required on all links in the landmarks navigation list. The additional semantics
are there to help facilitate quick-link options in reading systems so that the landmarks
list doesn’t have to be opened and navigated manually each time (e.g., a dedicated
reading system option to jump to the index).

We touched on the need for page lists in the last section, so I’ll only note that a page-
list nav should be included if the ebook is part of a dual print-digital workflow:

<nav epub:type="page-list">

 <h1>Page List</h1>

 1

 2

 …

</nav>

And don’t limit yourself to paper thinking. The navigation document allows any num-
ber of useful navigation lists you can devise. Maybe you want to give readers a quick
reference to major scenes in your story, for example. There are innumerable ways in
which you can expand on this functionality, but semantics and support are going to

Getting Around: Navigating an EPUB | 31

 

take community and player support to implement. But that’s true of all new function-
ality.

The Untold Story: Metadata
Bringing up the topic of metadata usually triggers thoughts about the need to include
title and author information in an ebook. While certainly a necessity, this kind of tra-
ditional metadata is not what we’re going to delve into now.

One of the big issues facing people with disabilities as they try to enter the ebook market
is how to discover the quality of the ebooks they want to buy. One ebook is not the
same as another, as we’ve been discussing, and readers need to know what they’re
getting when they pay for your product. And you should be rewarded for your com-
mitment to accessibility by having your ebooks stand out from the crowd.

Unfortunately, in the past, once you pushed your ebook into a distribution channel,
whatever good work you had done to make your content accessible would become
indistinguishable from all the inaccessible content out there to the person on the pur-
chasing end. At about the same time that EPUB 3 was being finalized, however, the
people at EDItEUR introduced a new set of accessibility metadata for use in ONIX
records. This metadata plugs the information gap.

This guide can’t possibly explain all of ONIX, nor would it be the ap-
propriate place to do so. If you are not familiar with the standard, please
visit the EDItEUR Web site for more information.

An ONIX record, if you’re not familiar, is an industry-standard message (xml record)
that accompanies your publication, providing distributors with both content and dis-
tribution metadata. This information is typically used to market and sell your ebook,
and these new properties now allow you to enhance that information with the accessible
features your ebook includes. Retailers can then make this information available in the
product description, for example, so readers can determine whether the ebook will
adequately meet their needs. It’s also not a stretch to imagine this information being
integrated into bookstore search engines to allow readers to narrow their results based
on their needs.

To include accessibility metadata in your ONIX record, you use the ProductFormFea
ture element, which is described in the standard as a composite container for product
information (e.g., it is also used to provide product safety information). To identify that
the element contains accessibility information, it must include a ProductFormFeature
Type child element with the value 09, as in the following example:

<ProductFormFeature>

 <ProductFormFeatureType>09</ProductFormFeatureType>

32 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

http://www.editeur.org

 …

</ProductFormFeature>

When this value is encountered, it indicates that the value of the sibling ProductForm
FeatureValue element is drawn from ONIX for Books codelist 196, which defines the
new accessible properties and the values to use in identifying them. As of writing, this
codelist includes the following properties:

• No reading system accessibility options disabled (10)

• Table of contents navigation (11)

• Index navigation (12)

• Reading order (13)

• Short alternative descriptions (14)

• Full alternative descriptions (15)

• Visualised data also available as non-graphical data (16)

• Accessible math content (17)

• Accessible chem content (18)

• Print-equivalent page numbering (19)

• Synchronised pre-recorded audio (20)

So, for example, if our EPUB contains accessible math formulas (using MathML) we
would indicate it as follows:

<ProductFormFeature>

 <ProductFormFeatureType>09</ProductFormFeatureType>

 <ProductFormFeatureValue>17</ProductFormFeatureValue>

</ProductFormFeature>

Likewise, to indicate accessible chemistry content (using ChemML) we would use the
value 18:

<ProductFormFeature>

 <ProductFormFeatureType>09</ProductFormFeatureType>

 <ProductFormFeatureValue>18</ProductFormFeatureValue>

</ProductFormFeature>

You must repeat the ProductFormFeature element for each accessibility requirement
your EPUB meets; it is not valid to combine all your features into a single element.

You must also ensure that you make yourself familiar with the requirements for com-
pliance before adding any accessibility properties; each of the properties defined in
codelist 196 includes conformance criteria. EPUB requires table of contents navigation,
for example, but the addition of the required navigation document does not automat-
ically indicate compliance. You need to include full navigation, plus navigation to any
tables and figures, before you comply with the table of contents navigation requirement.
Likewise, all EPUBs have a reading order defined by the spine element in the package
document, but that does not mean you comply to including a reading order. You need

The Untold Story: Metadata | 33

http://www.editeur.org/ONIX/book/codelists/current.html#codelist196

 

to ensure that sidebars and footnotes and similar information has been properly marked
up so as not to interfere with the narrative flow, as we went over in the section on the
logical reading order.

It is additionally worth noting that there are three properties that aren’t directly related
to the content of your EPUB:

• Compatibility tested (97)

• Trusted intermediary contact (98)

• Publisher contact for further accessibility information (99)

Each of these properties requires the addition of a child ProductFormFeatureDescrip
tion element to describe compliance:

<ProductFormFeature>

 <ProductFormFeatureType>09</ProductFormFeatureType>

 <ProductFormFeatureValue>97</ProductFormFeatureValue>

 <ProductFormFeatureDescription>

 Content has been tested to work on iBooks, Sony Reader and Adobe Digital
 Editions in both scripting enabled and disabled modes.

 </ProductFormFeatureDescription>
</ProductFormFeature>

Whatever compatibility testing you’ve performed should be listed using code 97 so that
readers can better determine the suitability of your ebook for their purposes. Not all
reading systems and assistive technologies work alike, or interact well together, and
real-world testing is the only way to tell what does and does not work.

There are organizations who specialize in testing across a broad spectrum of devices
who can assist you in evaluating your content, as this kind of evaluation can be no small
undertaking. A good practice to develop, for example, might be to periodically have
typical examples of content coming out of your production stream tested for compat-
ibility issues. The resulting statement could then be re-used across much of your con-
tent, so long as the features and markup used remain consistent.

Once you start getting creative with your content (e.g., using extensive scripted inter-
activity), you should engage experts as early on in the process as you can to ensure any
statement you make remains true, however.

The other two codes provide contact information for the person(s) in your organization,
or at a trusted intermediary, who can provide additional accessibility information:

<ProductFormFeature>

 <ProductFormFeatureType>09</ProductFormFeatureType>

 <ProductFormFeatureValue>99</ProductFormFeatureValue>

 <ProductFormFeatureDescription>

 accessibility-officer@example.com

 </ProductFormFeatureDescription>

</ProductFormFeature>

If you’re providing educational materials, for example, you’ll want to provide educators
a way to be able to contact you to determine whether your content will be accessible

34 | Chapter 2: Building a Better EPUB: Fundamental Accessibility

mailto:accessibility-officer@example.com

by students with various needs that may not be specifically addressed in your compat-
ibility testing statement or in the available metadata properties.

The Untold Story: Metadata | 35

CHAPTER 3

It’s Alive: Rich Content Accessibility

It’s now time to turn our attention to the features that EPUB 3 introduces to expand
on the traditional reading experience; the excitement around EPUB 3 doesn’t come
from text and images, after all.

This section takes focus on the dynamic aspects of EPUB 3. Rich media, audio inte-
gration, and scripted interactivity are all new features that have been added in this
version. Some of these features, like audio and video support and scripting, introduce
new accessibility challenges, while others, like overlaying audio on your text content
and enhancing text-to-speech rendering, improve access for all. (The members of this
latter group are also commonly referred to as accessibility superstructures, because they
are added on top of core EPUB content to enhance accessibility.)

But let’s get back to business of being accessible…

The Sound and the Fury: Audio and Video
The new built-in support for audio and video in EPUB 3 has its pros and cons from
both mainstream and accessibility perspectives. The elements simplify the process of
embedding multimedia, but come at the expense of complicating interoperability, and
by extension accessibility—specifically as relates to video.

There is currently no solution for the general accessibility problem of video, namely
that not all reading systems may natively play your content. The video element permits
any video format to be specified, but not all reading systems will support all formats.
Support for one or both of the VP8 codec (used in WebM video) and H.264 codec is
encouraged in the EPUB specification to improve interoperability, but you still have to
be aware that if you have an EPUB with WebM video and a reading system that only
supports H.264 you won’t be able to view the video.

Until consensus on codec and container support can be found, there is no easy solution
to this problem. You can try targeting your video format to the distribution channel,
but that assumes that the readers buying from the online bookstore will use the reading

37

 

system you expect, which isn’t a given. Even seemingly-simple solutions, like dupli-
cating the format of all video content, are only feasible on small scales and don’t take
into account the potential cost involved.

It is possible that some reading systems may provide no video support
at all.

But that was more of an aside to say that if you don’t think accessibility is worth your
time and effort, consider there may be a larger audience than you might expect that
could be relying on your fallbacks in the near term.

Playability issues aside, though, HTML5 is still a leap forward in terms of multimedia
support. It’s fair to assert that no one will miss plugins for rendering audio and video
content, certainly not on the accessibility side of the fence. From roach-motel players
that let you navigate in but never let you leave to players lacking keyboard support to
utter black holes, the accessibility community typically does not have a lot of good
things to say about multimedia as deployed on the Web.

That the new native elements can be controlled by the reading system in EPUB 3 should
translate into greater accessibility, however. To enable the default system controls, you
need only add a controls attribute to the element:

<video … controls="controls">

That these native controls vary in appearance from reading system to reading system,
however, leads to a natural tendency to script custom players. There’s nothing wrong
from an accessibility perspective in doing so, so long as your developers are fluent with
WAI-ARIA and ensure the custom controls are fully accessible.

But if you do create a custom control set using JavaScript, ensure that you still enable
the native browser controls in the audio and video elements by default. If you don’t,
only readers with JavaScript-enabled systems will be able to access the audio or video
content, and maybe only some of them. Depending on what scripting capabilities are
available, even script-enabled systems may not render your controls. You can always
disable the native controls in your JavaScript code if the system supports your custom
controls.

See the epubReadingSystem object for more information on how to
query what scripting capabilities a system has.

38 | Chapter 3: It’s Alive: Rich Content Accessibility

http://idpf.org/epub/30/spec/epub30-contentdocs.html#app-epubReadingSystem

Timed Tracks
Improved access to the content and the playback controls is only one half of the prob-
lem; your content still needs to be accessible to be useful. To this end, both the audio
and video elements allow timed text tracks to be embedded using the HTML5 track
element.

If you’re wondering what timed text tracks are, though, you’re probably more familiar
with their practical names, like captions, subtitles, and descriptions. A timed track
provides the instructions on how to synchronize text (or its rendering) with an audio
or video resource: to overlay text as a video plays, to include synthesized voice de-
scriptions, to provide signed descriptions, to allow navigation within the resource, etc.

As I touched on when talking about accessibility at the start of the guide, don’t under-
estimate the usefulness of subtitles and captions. They are not a niche accessibility need.
There are many cases where a reader would prefer not to be bothered with the noise
while reading, are reading in an environment where it would bother others to enable
sound, or are unable to hear clearly or accurately what is going on because of back-
ground noise (e.g., on a subway, bus, or airplane). The irritation they will feel at having
to return to the video later when they are in a more amenable environment pales next
to someone who is not provided any access to that information.

It probably bears repeating at this point, too, that subtitles and captions are not the
same thing, and both have important uses that necessitate their inclusion. Subtitles
provide the dialogue being spoken, whether in the same language as in the video or
translated, and there’s typically an assumption the reader is aware which person is
speaking. Captions, however, are descriptive and provide ambient and other context
useful for someone who can’t hear what else might be going on in the video in addition
to the dialogue (which typically will shift location on the screen to reflect the person
speaking).

A typical aside at this point would be to show a simple example of how to create one
of these tracks using one of the many available technologies, but plenty of these kinds
of examples abound on the Web. Understanding a bit of the technology is not a bad
thing, but, similar to writing effective descriptions for images, the bigger issue is having
the experience and knowledge about the target audience to create meaningful and use-
ful captions and descriptions. These issues are outside the realm of EPUB 3, so the only
advice I’ll give is if you don’t have the expertise, engage those who do. Transcription
costs are probably much less than you’d expect, especially considering the small
amounts of video and audio ebooks will likely include.

We’ll instead turn our attention to how these tracks can be attached to your audio or
video content using the track element. The following example shows a subtitle and
caption track being added to a video:

<video width="320" height="180" controls="controls">
 <source src="video/v001.webm" type="video/webm; codecs='vp8, vorbis'"/>
 <track

The Sound and the Fury: Audio and Video | 39

 

 kind="subtitles"

 src="video/captions/en/v001.vtt"

 srclang="en"

 label="English"/>

 <track

 kind="captions"

 src="video/captions/en/v001.cc.vtt"

 srclang="en"

 label="English"/>

</video>

The first three attributes on the track element provide information about the relation
to the referenced video resource: the kind attribute indicates the nature of the timed
track you’re attaching; the src attribute provides the location of the timed track in the
EPUB container; and the srclang attribute indicates the language of that track.

The label attribute differs in that it provides the text to render when presenting the
options the reader can select from. The value, as you might expect, is that you aren’t
limited to a single version of any one type of track so long as each has a unique label.
We could expand our previous example to include translated French subtitles as fol-
lows:

<video width="320" height="180" controls="controls">

 <source src="video/v001.webm" type="video/webm; codecs='vp8, vorbis'"/>

 <track

 kind="subtitles"

 src="video/captions/en/v001.vtt"

 srclang="en"

 label="English"/>

 <track

 kind="captions"

 src="video/captions/en/v001.cc.vtt"

 srclang="en"

 label="English"/>

 <track

 kind="subtitles"

 src="video/captions/fr/v001.vtt"

 srclang="fr"

 label="Français"/>

</video>

I’ve intentionally only used the language name for the label here to highlight one of the
prime deficiencies of the track element for accessibility purposes, however. Different
disabilities have different needs, and how you caption a video for someone who is deaf
is not necessarily how you might caption it for someone with cognitive disabilities, for
example.

The weak semantics of the label attribute are unfortunately all that is available to
convey the target audience. The HTML5 specification, for example, currently includes
the following track for captions (fixed to be XHTML-compliant):

<track

 kind="captions"

40 | Chapter 3: It’s Alive: Rich Content Accessibility

 src="brave.en.hoh.vtt"

 srclang="en"

 label="English for the Hard of Hearing"/>

You can match the kind of track and language to a reader’s preferences, but you can’t
make finer distinctions about who is the intended audience without reading the label.
Machines not only haven’t mastered the art of reading, but native speakers find many
ways to say the same thing, scuttling heuristic tests.

The result is that reading systems are going to be limited in terms of being able to
automatically enable the appropriate captioning for any given user. In reality, getting
one caption track would be a huge step forward compared to the Web, but it takes
away a tool from those who do target these reader groups and introduces a frustration
for the readers in that they have to turn on the proper captioning for each video.

I mentioned the difference between subtitles and captions at the outset, but the kind
attribute can additionally take the following two values of note:

•		 descriptions — specifying this value indicates that the track contains a text de-
scription of the video. A descriptions track is designed to provide missing infor-
mation to readers who can hear the audio but not see the video (which includes
blind and low-vision readers, but also anyone for whom the video display is ob-
scured or not available). The track is intended to be voiced by a text-to-speech
engine.

•		 chapters — a chapters track includes navigational aid within the resource. If your
audio or video is structured in a meaningful way (e.g., scenes), adding a chapters
track will enable readers of all abilities to more easily navigate through it.

But now I’m going to trip you up a bit. The downside of the track element that I’ve
been trying to hold off on is that it remains unsupported in browser cores as of writing
(at least natively), which means EPUB readers also may not support tracks right away.
There are some JavaScript libraries that claim to be able to provide support now (poly-
fills, as they’re colloquially called), but that assumes the reader has a JavaScript-enabled
reading system.

Embedding the tracks directly in your video resources is, of course, another option if
native support does not materialize right away.

Talk to Me: Media Overlays
When you watch words get highlighted in your reading system as a narrator speaks,
the term media overlay probably doesn’t immediately jump to mind as the best mar-
keting buzzword to describe the experience. But what you are in fact witnessing is a
media type (audio) being overlaid on your text content, and tech trumps marketing in
standards!

Talk to Me: Media Overlays | 41

 

The audio-visual magic that overlays enable in EPUBs is just the tip of the iceberg,
however. Overlays represent a bridge between the audio and video worlds, and between
mainstream and accessibility needs, which is what really makes this new technology so
exciting. They offer accessible audio navigation for blind and low-vision readers. They
can improve the reading experience for persons with trouble focusing across a page and
improve reading comprehension for many types of readers. They can also provide a
unique read-along experience for young readers.

From a mainstream publisher’s perspective, overlays provide a bridge between audio-
book and ebook production streams. Create a single source using overlays and you
could transform and distribute across the spectrum from audio-only to text-only. With
full-text and full-audio synchronization ebooks, you can transform down to a variety
of formats. If you’re going to create an audiobook version of your ebook, it doesn’t
make sense not to combine production, which is exactly what EPUB 3 allows you to
now do. Your source content is more valuable by virtue of its completeness, and you
can also choose to target and distribute your ebook with different modalities enabled
for different audiences.

From a reader’s perspective, they can purchase a format that provides adaptive mo-
dalities to meet their reading needs: they can choose which playback format they prefer,
or purchase a book with multiple modalities and switch between them as the situation
warrants—listening while driving and visually reading when back at home, for exam-
ple.

Media overlays are the answer to a lot of problems on both sides of the accessibility
fence, in other words.

If you’re coming to this guide from accessibility circles, however, you’re probably won-
dering why this is considered new and exciting when it sounds an awful lot like the
SMIL technology that has been at the core of the DAISY talking book specifications for
more than a decade. And you’re right…sort of. Overlays are not new technology, but
represent a new evolution of the DAISY standard, which EPUB 3 is a successor to. What
is really exciting from an accessibility perspective is the chance to move this production
back to the source to get high-quality audio and text synchronized ebooks directly from
publishers. Removing synchronization information from having to be encoded in con-
tent files is another benefit overlays provide over older talking book formats, greatly
simplifying their creation.

But knowing what overlays are and how they can enhance ebooks doesn’t get us any
closer to understanding how they work and the considerations involved in making
them, which is the real goal for this section. If you like to believe in magic, though,
here’s an early warning that by the end it won’t seem all that fantastic how your reading
system makes words and paragraphs highlight as a voice narrates the text. Prepare to
be disappointed that your reading system doesn’t have superpowers.

To begin moving under the hood of an EPUB, though, the first thing to understand is
that overlays are just specialized xml documents that contain the instructions a reading

42 | Chapter 3: It’s Alive: Rich Content Accessibility

system uses to synchronize the text display with the audio playback. They’re expressed
using a subset of SMIL that we’ll cover as we move along, combined with the
epub:type attribute we ran into earlier for semantic inflection.

SMIL (pronounced “smile”) is the shorthand way of referring to the
Synchronized Multimedia Integration Language. For more information
on this technology, see http://www.w3.org/TR/SMIL

The order of the instructions in the overlay document defines the reading order for the
ebook when in playback mode. A reading system will move through the instructions
one at a time, or a reader can manually navigate in similar fashion to how assistive
technologies enable navigation through the markup (i.e., escaping and skipping).

As a reading system encounters each synchronization point, it determines from the
provided information which element in which content file has to be loaded (by its id)
and the corresponding position in the audio track at which to start the narration. The
reading system will then load and highlight the word or passage for you at the same
time that you hear the audio start. When the audio track reaches the end point you’ve
specified—or the end of the audio file if you haven’t specified one—the reading system
checks the next synchronization point to see what text and audio to load next.

This process of playback and resynchronization continues over and over until you reach
the end of the book, giving the appearance to the reader that their system has come
alive and is guiding them through it.

This portrayal is intentionally simple. In practice, overlay synchroniza-
tion points may, for example, omit an audio reference when the reading
system is expected to synthetically render the text, or if the text reference
points to a multimedia object like the audio or video element that the
reading system is expected to initiate. Refer to the Media Overlays spec-
ification for more information on the full range of features.

As you might suspect at this point, the reading system can’t synchronize or play content
back any way but what has been defined; as a reader you cannot, for example, dynam-
ically change from word-to-word to paragraph-by-paragraph read-back as you desire.
The magic is only as magical as you make it, at least at this time.

With only a single level of playback granularity available, the decision on how fine a
playback experience to provide has typically been influenced by the disability you’re
targeting, going back to the origins of the functionality in talking books. Books for blind
and low-vision readers are often only synchronized to the heading level, for example,
and omit the text entirely. Readers with dyslexia or cognitive issues, however, may
benefit more from word-level synchronization using full-text full-audio playback.

Talk to Me: Media Overlays | 43

http://www.w3.org/TR/SMIL

 

Coarser synchronization—for example at the phrase or paragraph level—can be useful
in cases where the defining characteristics of a particular human narration (flow, into-
nation, emphasis) add an extra dimension to the prose, such as with spoken poetry or
religious verses. The production costs associated with synchronizing human-narrated
ebooks to the word level, however, has typically meant that only short-prose works
(such as children’s books) get this treatment.

Let’s turn to the practical construction of an overlay to discover why the complexity
increases by level, though. Understanding the issues will give better insight into which
model you ultimately decide to use.

Building an Overlay
Every overlay document begins with root smil element and a body, as exemplified in
the following markup:

<smil
 xmlns="http://www.w3.org/ns/SMIL"
 xmlns:epub="http://www.idpf.org/2007/ops"
 version="3.0">
 <body>

 </body>

</smil>

There’s nothing exciting going on here but a couple of namespace declarations and a
version attribute on the root. These are static in EPUB 3, so of little interest beyond
their existence. There is no required metadata in the overlays themselves, which is why
we don’t need to add a head element.

Of course, in order to now illustrate how to build up this shell and include it in an
EPUB, we’re going to need some content. I’m going to use the Moby Dick ebook that
Dave Cramer, a member of the EPUB working group, built as a proof of concept of the
specification for the rest of this section. This book is available from the EPUB 3 Sample
Content project page.

If we look at the content file for chapter one, we can see that the HTML markup has
been structured to showcase different levels of text/audio synchronization. After the
chapter heading, for example, the first paragraph has been broken down to achieve fine
synchronization granularity (word and sentence level), whereas the following para-
graph hasn’t been divided into smaller parts.

Compressing the markup in the file to just what we’ll be looking at, we have:

<section id="c01">

 <h1 id="c01h01">Chapter 1. Loomings.</h1>

 <p>Call

 me

 Ishmael.

 Some years ago… …</p>

44 | Chapter 3: It’s Alive: Rich Content Accessibility

http://code.google.com/p/epub-samples/downloads/list
http://code.google.com/p/epub-samples/downloads/list

 <p id="c01p0002">There now is your insular city of the Manhattoes…</p>
 …

</section>

You’ll notice that each element containing text content has an id attribute, as that’s
what we’ll be referencing when we get to synchronizing with the audio track.

The markup additionally includes span tags to differentiate words and sentences in the
first p tag. The second paragraph only has an id attribute on it, however, as we’re going
to omit synchronization on the individual text components it contains to show para-
graph-level synchronization.

We can now take this information to start building the body of our overlay. Switching
back to our empty overlay document, the first element we’re going to include in the
body is a seq:

<body>
 <seq

 id="id1"
 epub:textref="chapter_001.xhtml#c01"
 epub:type="bodymatter chapter">

 </seq>

</body>

This element serves the same grouping function the corresponding section element
does in the markup, and you’ll notice the textref attribute references the section’s id.
The logical grouping of content inside the seq element likewise enables escaping and
skipping of structures during playback, as we’ll return to when we look at some struc-
tural considerations later.

In this case, the epub:type attribute conveys that this seq represents a chapter in the
body matter. Although the attribute isn’t required, there’s little benefit in adding seq
elements if you omit any semantics, as a reading system will not be able to provide
skippability and escapability behaviors unless it can identify the purpose of the struc-
ture.

It may seem redundant to have the same semantic information in both the markup and
overlay, but remember that each is tailored to different rendering and playback meth-
ods. Without this information in the overlay, the reading system would have to inspect
the markup file to determine what the synchronization elements represent, and then
resynchronize the overlay using the markup as a guide. Not a simple process. A single
channel of information is much more efficient, although it does translate into a bit of
redundancy (you also typically wouldn’t be crafting these documents by hand, and a
recording application could potentially pick up the semantics from the markup and
apply them to the overlay for you).

We can now start defining synchronization points by adding par elements to the seq,
which is the only other step in the process. Each par contains a child text and a child

Talk to Me: Media Overlays | 45

 

audio element, which define the fragment of your content and the associated portion
of an audio file to render in parallel, respectively.

Here’s the entry for our primary chapter heading, for example:

<par id="heading1">

 <text src="chapter_001.xhtml#c01h01"/>

 <audio

 src="audio/mobydick_001_002_melville.mp4"

 clipBegin="0:00:24.500"

 clipEnd="0:00:29.268"/>

</par>

The text element contains an src attribute that identifies the filename of the content
document to synchronize with, and a fragment identifier (the value after the # char-
acter) that indicates the unique identifier of a particular element within that content
document. In this case, we’re indicating that chapter_001.xhtml needs to be loaded and
the element with the id c01h01 displayed (the h1 in our sample content, as expected).

The audio element likewise identifies the source file containing the audio narration in
its src attribute, and defines the starting and ending offsets within it using the clipBe
gin and clipEnd attributes. As indicated by these attributes, the narration of the heading
text begins at the mid 24 second mark (to skip past the preliminary announcements)
and ends just after the 29 second mark. The milliseconds on the end of the start and
end values give an idea of the level of precision needed to create overlays, and why
people typically don’t mark them up by hand. If you are only as precise as a second,
the reading system can move readers to the new prose at the wrong time or start nar-
ration in the middle of a word or at the wrong word.

But those concerns aside, that’s all there is to basic text and audio synchronization. So,
as you can now see, no reading system witchcraft was required to synchronize the text
document with its audio track! Instead, the audio playback is controlled by timestamps
that precisely determine how an audio recording is mapped to the text structure.
Whether synchronizing down to the word or moving through by paragraph, this pro-
cess doesn’t change.

To synchronize the first three words “Call me Ishmael” in the first paragraph, for ex-
ample, we simply repeat the process of matching element ids and audio offsets:

<par>

 <text src="chapter_001.xhtml#c01w00001"/>

 <audio

 src="audio/mobydick_001_002_melville.mp4"

 clipBegin="0:00:29.269"

 clipEnd="0:00:29.441"/>

</par>
<par>

 <text src="chapter_001.xhtml#c01w00002"/>

 <audio

 src="audio/mobydick_001_002_melville.mp4"

 clipBegin="0:00:29.441"

 clipEnd="0:00:29.640"/>

46 | Chapter 3: It’s Alive: Rich Content Accessibility

</par>
<par>

 <text src="chapter_001.xhtml#c01w00003"/>

 <audio

 src="audio/mobydick_001_002_melville.mp4"

 clipBegin="0:00:29.640"

 clipEnd="0:00:30.397"/>

</par>

You’ll notice each clipEnd matches the next element’s clipBegin here because we have
a single continuous playback track. Finding each of these synchronization points man-
ually is not so easy, though, as you might imagine.

Synchronizing to the sentence level, however, means only one synchronization point
is required for all the words the sentence contains, thereby reducing the time and com-
plexity of the process several magnitudes. The par is otherwise constructed exactly like
the previous example:

<par>

 <text src="chapter_001.xhtml#c01s0002"/>

 <audio

 src="audio/mobydick_001_002_melville.mp4"

 clipBegin="0:00:30.397"

 clipEnd="0:00:44.783"/>

</par>

The process of creating overlays is only complicated by the time and text synchroni-
zations involved, as is no doubt becoming clearer. Moving up another level, paragraph
level synchronization reduces the process several more magnitudes as all the sentences
can be skipped. Here’s the single entry we’d only have to make for the entire 28s second
paragraph:

<par>

 <text src="chapter_001.xhtml#c01p0002"/>

 <audio

 src="audio/mobydick_001_002_melville.mp4"

 clipBegin="0:01:46.450"

 clipEnd="0:02:14.138"/>

</par>

The complexity isn’t only limited to the number of entries and finding the audio points,
however, otherwise technology would easily overcome the problem. Narrating at a
heading, paragraph, or even sentence level can be done relatively easily with trained
narrators, as each of these structures provides a natural pause point for the person
reading, a simplifier not provided when performing word-level synchronization.

A real-world recording scenario, for example, would typically involve the narrator
loading their ebook and synchronizing the text in the recording application as they
narrate to speed up this process immensely (e.g., using the forward arrow or spacebar
each time they start a new paragraph to have the recording program automatically set
the new synchronization point). Performing the synchronization at the natural pause
points is not problematic in this scenario, as the person reading is briefly not focused

Talk to Me: Media Overlays | 47

 

on that task and/or the person assisting has enough of a break to cleanly resynchronize.
Trying to narrate and synchronize at the word level, however, is a tricky process to
perform effectively, as people naturally talk more fluidly than any process can keep up
with, even if two people are involved.

The real-world experience I describe here comes from the creation of
DAISY talking books, to be clear. Tools for the similar production of
EPUB 3 overlays will undoubtedly appear in time, as well, but as of
writing are in short supply.

Ultimately, the only advice that can be given is to strive for the finest granularity you
can. Paragraphs may be easier to synchronize than sentences, but if the viewing screen
isn’t large enough to view the entire paragraph the invisible part won’t ever come into
view as the narration plays (the reading system can only know to resynch at the next
point; it can’t intrinsically know that narration has to match what is on screen or have
any way to determine what is on screen at any given time).

We’re not completely done yet, though. There are a few quick details to run through
in order to now include this overlay in our EPUB.

The following instructions assume a basic level of familiarity with EPUB
publication files. Refer to the EPUB Publications 3.0 specification for
more information.

Assuming we’ve saved our overlay as chapter_001_overlay.smil, the first step is simply
to include an entry in the manifest:

<item

 id="chapter_001_overlay"

 href="chapter_001_overlay.smil"

 media-type="application/smil+xml"/>

We then need to include a media-overlay attribute on the manifest item for the corre-
sponding content document for chapter one:

<item

 id="xchapter_001"

 href="chapter_001.xhtml"

 media-type="application/xhtml+xml"

 media-overlay="chapter_001_overlay"/>

The value of this attribute is the id we created for the overlay in the previous step.

And finally we need to add metadata to the publication file indicating the total length
of the audio for each individual overlay and for the publication as a whole. For com-
pleteness, we’ll also include the name of the narrator.

48 | Chapter 3: It’s Alive: Rich Content Accessibility

http://idpf.org/epub/30/spec/epub30-publications.html

<meta property="media:duration" refines="#chapter_001_overlay">0:14:43</meta>

…

<meta property="media:duration">0:23:46</meta>

<meta property="media:narrator">Stuart Wills</meta>

The refines attribute on the first meta element specifies the id of the manifest item we
created for the overlay, as this is how we match the time value up to the content file it
belongs to. The lack of a refines attribute on the next duration meta element indicates
it contains the total time for the publication (only one can omit the refines attribute).

There’s one final metadata item left to add and then we’re done:

<meta property="media:active-class">-epub-media-overlay-active</meta>

This special media:active-classmeta property tells the reading system which CSS class
to apply to the active element when the audio narration is being played (i.e., the high-
lighting to give it).

For example, to apply a yellow background to each section of prose as it is read, as is
traditionally found in accessible talking books, you would define the following defini-
tion in your CSS file:

.-epub-media-overlay-active
{

 background-color: yellow;
}

And that’s the long and short of creating overlays.

Structural Considerations
I briefly touched on the need to escape nested structures, and skip unwanted ones, but
let’s go back to this functionality as a first best practice, as it is critical to the usability
of the overlays feature in exactly the same way markup is to content-level navigation.

If you have the bad idea in your head that only par elements matter for playback, and
you can go ahead and make overlays that are nothing more than a continuous sequence
of these elements, get that idea back out of your head. It’s the equivalent of tagging
everything in the body of a content file using div or p tags.

Using seq elements for problematic structures like lists and tables provides the infor-
mation a reading system needs to escape from them.

Here’s how to structure a simple list, for example:

<seq id="seq002" epub:type="list" epub:textref="chapter_012.xhtml#ol01">
 <par id="list001item001" epub:type="list-item">

 <text src="chapter_012.xhtml#ol01i01"/>
 <audio src="audio/chapter12.mp4" clipBegin="0:26:48" clipEnd="0:27:11"/>

 </par>
 <par id="list001item002" epub:type="list-item">

 <text src="chapter_012.xhtml#ol01i02"/>
 <audio src="audio/chapter12.mp4" clipBegin="0:27:11" clipEnd="0:27:29"/>

Talk to Me: Media Overlays | 49

 

 </par>
 …

</seq>

A reading system can now discover from the epub:type attribute the nature of the seq
element and of each par it contains. If the reader indicates at any point during the
playback of the par element list items that they want to jump to the end, the reading
system simply continues playback at the next seq or par element following the parent
seq. If the list contained sub-lists, you could similarly wrap each in its own seq element
to allow the reader to escape back up through all the levels.

A similar nested seq process is critical for table navigation: a seq to contain the entire
table, individual seq elements for each row, and table-cell semantics on the par elements
containing the text data.

A simple three-cell table could be marked up using this model as follows:

<seq epub:type="table" epub:textref="ch007.xhtml#tbl01">
 <seq epub:type="table-row" epub:textref="ch007.xhtml#tbl01r01">

 <par epub:type="table-cell">…</par>
 <par epub:type="table-cell">…</par>
 <par epub:type="table-cell">…</par>

 </seq>
</seq>

You could also use a seq for the table cells if they contained complex data:

<seq epub:type="table-cell" epub:textref="ch007.xhtml#tbl01r01c01">
 <par>…</par>
 …

</seq>

But attention shouldn’t only be given to seq elements when it comes to applying se-
mantics. Readers also benefit when par elements are identifiable, particularly for skip-
ping:

<par id="note21" epub:type="note">
 <text src="notes.xhtml#c02note03"/>
 <audio src="audio/notes.mp4" clipBegin="0:14:23.146" clipEnd="0:15:11.744"/>

</par>

If all notes receive the semantic as in the above example, a reader could disable all note
playback, ensuring the logical reading order is maintained. All secondary content that
isn’t part of the logical reading order should be so identified so that it can be skipped.

This small extra effort to mark up structures and secondary content does a lot to make
your content more accessible.

Tell It Like It Is: Text-to-Speech (TTS)
An alternative (and complement) to human narration, and the associated costs of cre-
ating and distributing it, is speech synthesis—when done right, that is. The mere

50 | Chapter 3: It’s Alive: Rich Content Accessibility

thought of synthesized speech is enough to make some people cringe, though, as it’s
still typically equated with the likes of poor old much-maligned Microsoft Sam and his
tinny, often-incomprehensible renderings. Modern high-end voices are getting harder
and harder to distinguish as synthesized, however, and the voices on most reading
systems and computers are getting progressively more natural sounding and pleasant
to the ears for extended listening.

But whatever you think of the voices, the need to be able to synthesize the text of your
ebook is always going to be vital to a segment of your readers, especially when human
narration is not available. It’s also generally useful to the broader reading demographic,
as I’ll return to.

And the voice issues are a bit of a red herring. The real issue here is not how the voices
sound but the mispronunciations the rendering engines make, and the frequency with
which they often make them. The constant mispronunciation of words disrupts com-
prehension and ruins reading enjoyment, as it breaks the narrative flow and leaves the
reader to guess what the engine was actually trying to speak. It doesn’t have to be this
way, though; the errors occur because the mechanisms to enhance default synthetic
renderings haven’t been made available in ebooks, not because there aren’t any.

But to step back slightly, synthetic speech engines aren’t inherently riddled with errors,
they just fail because word pronunciation can be an incredibly complex task, one that
requires more than just the simple recognition of character data. Picture yourself learn-
ing a new language and struggling to understand why some vowels are silent in some
situations and not in others, or why their pronunciation changes in seemingly haphaz-
ard ways, not to mention trying to grasp where phonetic boundaries are and so on. A
rendering engine faces the same issues with less intelligence and no ability to learn on
its own or from past mistakes.

The issue is often sometimes as simple as not being able to parse parts of speech. For
example, consider the following sentence:

An official group record of past achievements was never kept.

A speech engine may or may not say “record” properly, because record used as noun
is not pronounced the same way as when used as a verb in English.

The result is that most reading systems with built-in synthetic speech capabilities will
do a decent job with the most common words in any language, but can trip over them-
selves when trying to pronounce complex compound words, technical terms, proper
names, abbreviations, numbers, and the like. Heteronyms—words that are spelled the
same way but have different pronunciations and meanings—also offer a challenge, as
you can’t always be sure which pronunciation will come out. The word bass in English,
for example, is pronounced one way to indicate a fish (bass) and another to indicate
an instrument (base).

When you add up the various problem areas, it’s not a surprise why there’s a high
frequency of errors. These failings are especially problematic in educational, science,

Tell It Like It Is: Text-to-Speech (TTS) | 51

 

medical, legal, tax, and similar technical publishing fields, as you might expect, as the
proper pronunciation of terms is critical to comprehension and being able to commu-
nicate with peers.

The ability to correctly voice individual words is a huge benefit to all readers, in other
words, which is why you should care about the synthetic rendering quality of your
ebooks, as I said I’d get back to. Even if all your readers aren’t going to read your whole
book via synthetic speech, everyone comes across words they aren’t sure how to pro-
nounce, weird-looking character names, etc. In the print world, they’d just have to
guess at the pronunciation and live with the nuisance of wondering for the rest of the
book whether they have the it right in their head or not (barring the rare pronunciation
guide in the back, of course).

The embedded dictionaries and pronunciations that reading systems offer are a step
up from print, but typically are of little-to-no help in many of these cases, since speci-
alized terms and names don’t appear in general dictionaries. Enhancing your ebooks
even just to cover the most complicated names and terms goes a long way to making
the entire experience better for all. Enhanced synthetic speech capabilities are a great
value-add to set you apart from the crowd, especially if you’re targeting broad audience
groups.

Synthetic speech can also reduce the cost to produce audio-enhanced ebooks. Human
narration is costly, as I mentioned at the outset, and typically only practical for novels,
general non-fiction, and the like. But even in those kinds of books, are you going to
have a person narrate the bibliographies and indexes and other complex structures in
the back matter, or would it make more sense to leave them to the reader’s device to
voice? Having the pronunciation of words consistent across the human-machine divide
takes on a little more importance in this light, unless you want to irk your readers with
rotten sounding back matter (or worse, omitted material).

And as I mentioned in the overlays section, there are reading systems that already give
word-level text-audio synchronization in synthetic speech playback mode, surpassing
what most people would attempt with an overlay and human narration. As each word
is fed for rendering it gets highlighted on the screen auto-magically; there’s nothing
special you have to do.

The cost and effort to improve synthetic speech is also one that has the potential to
decrease over time as you build re-usable lexicons and processes to enhance your books.

But enough selling of benefits. You undoubtedly want to know how EPUB 3 helps you,
so let’s get on with the task.

The new specification adds three mechanisms specifically aimed at synthetic speech
production: PLS lexicon files, SSML markup, and CSS3 Speech style sheets. We’ll go
into each of these in turn and explore how you can now combine them to optimize the
quality of your ebooks.

52 | Chapter 3: It’s Alive: Rich Content Accessibility

PLS Lexicons
The first of the new synthetic speech enhancement layers we’ll look at is PLS files, which
are xml lexicon files that conform to the W3C Pronunciation Lexicon Specification.
The entries in these files identify the word(s) to apply each pronunciation rule to. The
entries also include the correct phonetic spelling, which provides the text-to-speech
engine with the proper pronunciation to render.

Perhaps a simpler way of thinking about PLS files, though, is as containing globally-
applicable pronunciation rules: the entries you define in these files will be used for all
matching cases in your content. Instead of having to add the pronunciation over and
over every time the word is encountered in your markup, as SSML requires, these lex-
icons are used as global lookups.

PLS files are consequently the ideal place to define all the proper names and technical
terms and other complex words that do not change based on the context in which they
are used. Even in the case of heteronyms, it’s good to define the pronunciation you
deem the most commonly used in your PLS file, as it may be the only case in your
ebook(s). It also ensures that you know how the heteronym will always be pronounced
by default, to remove the element of chance.

The PLS specification does define a role attribute to enable context-
dependent pronunciations (e.g., to differentiate the pronunciation of a
word when used as a verb or noun), but support for it is not widespread
and no vocabulary is defined for standard use. I’ll defer context-depen-
dent differentiation to SSML, as a result, even though a measure is tech-
nically possible in PLS files.

But let’s take a look at a minimal example of a complete PLS file to see how they work
in practice. Here we’ll define a single entry for “acetaminophen” to cure our pronun-
ciation headaches:

<lexicon

 version="1.0"

 alphabet="x-sampa"

 xml:lang="en"

 xmlns="http://www.w3.org/2005/01/pronunciation-lexicon">

 <lexeme>

 <grapheme>acetaminophen</grapheme>

 <phoneme>@"sit@'mIn@f@n</phoneme>

 </lexeme>

</lexicon>

To start breaking this markup down, the alphabet attribute on the root lexicon element
defines the phonetic alphabet we’re going to use to write our pronunciations. In this
case, I’m indicating that I’m going to write them using X-SAMPA.

Tell It Like It Is: Text-to-Speech (TTS) | 53

http://www.w3.org/TR/pronunciation-lexicon/

 

X-SAMPA is the Extended Speech Assessment Methods Phonetic Al-
phabet. Being an ASCII-based phonetic alphabet, I’ve chosen to use it
here only because it is more easily writable (by mere mortals like this
author) than the International Phonetic Alphabet (IPA). It is not clear
at this time which alphabet(s) will receive the most widespread support
in reading systems, however.

The version and xmlns namespace declaration attributes are static values, so nothing
exciting to see there, as usual. The xml:lang attribute, however, is required, and must
reflect the language of the entries contained in the lexicon. Here we’re declaring that
all the entries are in English.

The root would normally contain many more lexeme elements than in this example, as
each defines the word(s) the rule applies to in the child grapheme element(s).
(Graphemes, of course, don’t have to take the form of words, but for simplicity of
explanation I’ll stick to the general concept.) When the string is matched, the pronun-
ciation in the phoneme element gets rendered in place of the default rendering the engine
would have performed.

Or, if it helps conceptualize, when the word “acetaminophen” is encountered in the
prose, before passing the word to the rendering engine to voice, an internal lookup of
the defined graphemes occurs. Because we’ve defined a match, the phoneme and the
alphabet it adheres to are swapped in instead for voicing.

That you can include multiple graphemes may not seem immediately useful, but it
enables you to create a single entry for regional variations in spelling, for example.
British and American variants of “defense” could be defined in a single rule as:

<lexeme>
 <grapheme>defense</grapheme>
 <grapheme>defence</grapheme>
 <phoneme>dI'fEns</phoneme>

</lexeme>

It is similarly possible to define more than one pronunciation by adding multiple pho
neme elements. We could add the IPA spelling to the last example as follows, in case
reading systems end up only supporting one or the other alphabet:

<lexeme>
 <grapheme>defense</grapheme>
 <grapheme>defence</grapheme>
 <phoneme>dI'fEns</phoneme>
 <phoneme alphabet="ipa">dɪˈfɛns</phoneme>

</lexeme>

The alphabet attribute on the new phoneme element is required because its spelling
doesn’t conform to the default defined on the root. If the rendering engine doesn’t
support X-SAMPA, it could now possibly make use of this embedded IPA version in-
stead.

54 | Chapter 3: It’s Alive: Rich Content Accessibility

The phoneme doesn’t have to be in another alphabet, however; you could add a regional
dialect as a secondary pronunciation, for example. The specification unfortunately
doesn’t provide any mechanisms to indicate why you’ve included such additional pro-
nunciations or when they should be used, so there’s not much value in doing so at this
time.

There’s much more to creating PLS files than can be covered here, of course, but you’re
now versed in the basics and ready to start compiling your own lexicons. You only need
to attach your PLS file to your publication to complete the process of enhancing your
ebook.

The first step is to include an entry for the PLS file in the EPUB manifest:

<item href="EPUB/lexicon.pls" id="pls" media-type="application/pls+xml"/>

The href attribute defines the location of the file relative to the EPUB container root
and the media-type attribute value “application/pls+xml” identifies to a reading system
that we’ve attached a PLS file.

Including one or more PLS files does not mean they apply by default to all your content,
however; in fact, they apply to none of it by default. You next have to explicitly tie each
PLS lexicon to each XHTML content document it is to be used with by adding a link
element to the document’s header:

<html …>
 <head>

 …
 <link

 rel="pronunciation"
 href="lexicon.pls"
 type="application/pls+xml"
 hreflang="en" />

 …
 </head>
 …

</html>

There are a number of differences between the declaration for the PLS file in the pub-
lication manifest above and in the content file here. The first is the use of the rel at-
tribute to include an explicit relationship (that the referenced file represents pronun-
ciation information). This attribute represents somewhat redundant information, how-
ever, since the media type is once again specified (here in the type attribute). But as it
is a required attribute in HTML5, it can’t be omitted.

You may have also noticed that the location of the PLS file appears to have changed.
We’ve dropped the EPUB subdirectory from the path in the href attribute because
reading systems process the EPUB container differently than they do content files. Re-
sources listed in the manifest are referenced by their location from the container root.
Content documents, on the other hand, reference resources relative to their own loca-
tion in the container. Since we’ll store both our content document and lexicon file in
the EPUB subdirectory, the href attribute contains only the filename of the PLS lexicon.

Tell It Like It Is: Text-to-Speech (TTS) | 55

 

The HTML link element also includes an additional piece of information to allow
selective targeting of lexicons: the hreflang attribute. This attribute specifies the lan-
guage to which the included pronunciations apply. For example, if you have an English
document (as defined in the xml:lang attribute on the html root element) that embeds
French prose, you could include two lexicon files:

<link

 rel="pronunciation"

 href="lexicon-en.pls"

 type="application/pls+xml"

 hreflang="en" />

<link

 rel="pronunciation"

 href="lexicon-fr.pls"

 type="application/pls+xml"

 hreflang="fr" />

Assuming all your French passages have xml:lang attributes on them, the reading sys-
tem can selectively apply the lexicons to prevent any possible pronunciation confusion:

<p>It's the Hunchback of <i xml:lang="fr">Notre Dame</i> not of Notre Dame.</p>

A unilingual person reading this prose probably would not understand the distinction
being made here: that the French pronunciation is not the same as the Americanization.
Including separate lexicons by language, however, would ensure that readers would
hear the Indiana university name differently than the French cathedral if they turn on
TTS:

<lexicon

 version="1.0"

 alphabet="x-sampa"

 xml:lang="en"

 xmlns="http://www.w3.org/2005/01/pronunciation-lexicon">

 <lexeme>

 <grapheme>Notre Dame</grapheme>

 <phoneme>noUt@r 'deIm</phoneme>

 </lexeme>

</lexicon>

<lexicon

 version="1.0"

 alphabet="x-sampa"

 xml:lang="fr"

 xmlns="http://www.w3.org/2005/01/pronunciation-lexicon">

 <lexeme>

 <grapheme>Notre Dame</grapheme>

 <phoneme>n%oUtr@ d"Am</phoneme>

 </lexeme>

</lexicon>

When the contents of the i tag are encountered, and identified as French, the pronun-
ciation from the corresponding lexicon gets applied instead of the one from the default
English lexicon.

56 | Chapter 3: It’s Alive: Rich Content Accessibility

Now that we know how to globally define pronunciation rules, let’s turn to how we
can override and/or define behavior at the markup level.

SSML
Although PLS files are a great way to globally set the pronunciation of words, their
primary failing is that they aren’t a lot of help where context matters in determining
the correct pronunciation. Leave the pronunciation of heteronyms to chance, for ex-
ample, and you’re invariably going to be disappointed by the result; the cases where
context might not significantly influence comprehension (e.g., an English heteronym
like “mobile”), are going to be dwarfed by the ones where it does.

By way of example, when talking about PLS files I mentioned bass the instrument and
bass the fish as an example of how context influences pronunciation. Let’s take a look
at this problem in practice now:

<p>The guitarist was playing a bass that was shaped like a bass.</p>

Human readers won’t have much of a struggle with this sentence, despite the contrived
oddity of it. A guitarist is not going to be playing a fish shaped like a guitar, and it would
be strange to note that the bass guitar is shaped like a bass guitar. From context you’re
able to determine without much pause that we’re talking about someone playing a
guitar shaped like a fish.

All good and simple. Now consider your reaction if, when listening to a synthetic speech
engine pronounce the sentence, you heard both words pronounced the same way,
which is the typical result. The process to correct the mistake takes you out of the flow
of the narrative. You’re going to wonder why the guitar is shaped like a guitar, admit it.

Synthetic narration doesn’t afford you the same ease to move forward and back through
the prose that visual reading does, as words are only announced as they’re voiced. The
engine may be applying heuristic tests to attempt to better interpret the text for you
behind the scenes, but you’re at its mercy. You can back up and listen to the word again
to verify whether the engine said what you thought it did, but it’s an intrusive process
that requires you to interact with the reading system. If you still can’t make sense of
the word, you can have the reading system spell it out as a last resort, but now you’re
train of thought is completely on understanding the word.

And this is an easy example. A blind reader used to synthetic speech engines would
probably just keep listening past this sentence having made a quick assumption that
the engine should have said something else, for example, but that’s not a justification
for neglect. The problems only get more complex and less avoidable, no matter your
familiarity. And that you’re asking your readers to compensate is a major red flag you’re
not being accessible, as mispronunciations are not always easily overcome depending
on the reader’s disability. It also doesn’t reflect well on your ebooks if readers turn to
synthetic speech engines to help with pronunciation and find gibberish, as I touched
on in the last section.

Tell It Like It Is: Text-to-Speech (TTS) | 57

 

And the problems are rarely one-time occurrences. When the reader figures out what
the engine was trying to say they will, in all likelihood, have to make a mental note on
how to translate the synthetic gunk each time it is re-encountered to avoid repeatedly
going through the same process. If you don’t think that makes reading comprehension
a headache, try it sometime.

But this is where the Synthetic Speech Markup Language (SSML) comes in, allowing
you to define individual pronunciations at the markup level. EPUB 3 adds the
ssml:alphabet and ssml:ph attributes, which allow you to specify the alphabet you’re
using and phonemic pronunciation of the containing element’s content, respectively.
These attributes work in very much the same way as the PLS entries we just reviewed,
as you might already suspect.

For example, we could revise our earlier example as follows to ensure the proper pro-
nunciation for each use of bass:

<p>

 The guitarist was playing a

 bass that was shaped

 like a bass.

</p>

The ssml:alphabet attribute on each span element identifies that the pronunciation
carried in the ssml:ph attribute is written in X-SAMPA, identically to the PLS alpha
bet attribute. We don’t need a grapheme to match against, because we’re telling the
synthetic speech engine to replace the content of the span element. The engine will now
voice the provided pronunciations instead of applying its own rules. In other words,
no more ambiguity and no more rendering problem; it really is that simple.

The second ssml:ph attribute includes an & entity as the actual X-
SAMPA spelling is: b&s. Ampersands are special characters in XHTML
that denote the start of a character entity, so have to be converted to
entities themselves in order for your document to be valid. When passed
to the synthetic speech engine, however, the entity will be converted
back to the ampersand character. (In other words, the extra characters
to encode the character will not affect the rendering.)

Single and double quote characters in X-SAMPA representations would
similarly need to be escaped depending on the characters you use to
enclose the attribute value.

It bears a quick note that the pronunciation in the ssml:ph attribute has to match the
prose contained in the element it is attached to. By wrapping span elements around
each individual word in this example, I’ve limited the translation of text to phonetic
code to just the problematic words I want to fix. If I put the attribute on the parent p
element, I’d have to transcode the entire sentence.

58 | Chapter 3: It’s Alive: Rich Content Accessibility

The upside of the granularity SSML markup provides should be clear now, though: you
can overcome any problem no matter how small (or big) with greater precision than
PLS files offer. The downside, of course, is having to work at the markup level to correct
each instance that has to be overridden.

To hark back to the discussion of PLS files for a moment, though, we could further
simplify the correction process by moving the more common pronunciation to our PLS
lexicon and only fix the differing heteronym:

<lexicon

 version="1.0"

 alphabet="x-sampa"

 xml:lang="en"

 xmlns="http://www.w3.org/2005/01/pronunciation-lexicon">

 <lexeme>

 <grapheme>bass</grapheme>

 <phoneme>beIs</phoneme>

 </lexeme>

</lexicon>

<p>

 The guitarist was playing a bass that was shaped like a

 bass.

</p>

It’s also not necessary to define the ssml:alphabet attribute every time. If we were only
using a single alphabet throughout the document, which would be typical of most
ebooks, we could instead define the alphabet once on the root html element:

<html … ssml:alphabet="x-sampa">

So long as the alphabet is defined on an ancestor of the element carrying the ssml:ph
attribute, a rendering engine will interpret it correctly (and your document will be
valid). (The root element is the ancestor of all the elements in the document, which is
why these kinds of declarations are invariably found on it, in case you’ve ever wondered
but were afraid to ask.)

Our markup can now be reduced to the much more legible and easily maintained:

<p>

 The guitarist was playing a bass that was shaped like a

 bass.

</p>

If you’re planning to share content across ebooks or across content files
within one, it’s better to keep the attributes paired so that there is no
confusion about which alphabet was used to define the pronunciation.
It’s not a common requirement, however.

Tell It Like It Is: Text-to-Speech (TTS) | 59

 

But heteronyms are far from the only case for SSML. Any language construct that can
be voiced differently depending on the context in which it is used is a candidate for
SSML. Numbers are always problematic, as are weights and measures:

<p>
 There are 1024 bits
 in a byte, not 1024,
 as the year is pronounced.

</p>

<p>
 It reached a high of 37C in the sun as I stood
 outside 37C waiting for someone
 to answer my knocks and let me in.

</p>

<p>
 You'll be an XL by the end of Super Bowl
 XL at the rate you're eating.

</p>

But there’s unfortunately no simple guideline to give in terms of finding issues. It takes
an eye for detail and an ear for possible different aural renderings. Editors and indexers
are good starting resources for the process, as they should be able to quickly flag prob-
lem words during production so they don’t have to be rooted out after the fact. Pro-
grams that can analyze books and report on potentially problematic words, although
not generally available, are not just a fantasy. Their prevalence will hopefully grow now
that EPUB 3 incorporates more facilities to enhance default renderings, as they can
greatly reduce the human burden.

The only other requirement when using the SSML attributes that I haven’t touched on
is that you always have to declare the SSML namespace. I’ve omitted the declaration
from the previous examples for clarity, and because the namespace is typically only
specified once on the root html element as follows:

<html … xmlns:ssml="http://www.w3.org/2001/10/synthesis">

Similar to the alphabet attribute, we could have equally well attached the namespace
declaration to each instance where we used the attributes:

<span
 xmlns:ssml="http://www.w3.org/2001/10/synthesis"
 ssml:ph="x-sampa"
 …>

But that’s a verbose approach to markup, and generally only makes sense when content
is encapsulated and shared across documents, as I just noted, or expected to be ex-
tracted into foreign playback environments where the full document context is un-
available.

60 | Chapter 3: It’s Alive: Rich Content Accessibility

The question you may still be wondering at this point is what happens if a PLS file
contains a pronunciation rule that matches a word that is also defined by an SSML
pronunciation, how can you be sure which one wins? You don’t have to worry, how-
ever, as the EPUB 3 specification defines a precedence rule that states that the SSML
pronunciation must be honored. There’d be no way to override the global PLS defini-
tions, otherwise, which would make SSML largely useless in resolving conflicts.

But to wrap up, a final note is that there is no reason why you couldn’t make all your
improvements in SSML. It’s not the ideal way to tackle the problem, because of the
text-level recognition and tagging it requires, at least in this author’s opinion, but it
may make more sense to internal production to only use a single technology and/or
support for PLS may not prove universal (it’s too early to know yet).

CSS3 Speech
You might be thinking the global definition power of PLS lexicons combined with the
granular override abilities of SSML might be sufficient to cover all cases, so why a third
technology? But you’d be only partly right.

The CSS3 Speech module is not about word pronunciation, however. It includes no
phonetic capabilities, but defines how you can use CSS style sheet technology to control
such aspects of synthetic speech rendering as the gender of voice to use, the amount of
time to pause before and after elements, when to insert aural cues, etc.

The CSS3 Speech module also provides a simpler entry point for some basic voicing
enhancements. The ability to write X-SAMPA or IPA pronunciations requires special-
ized knowledge, but the speak-as property masks the complexity for some common
use cases.

You could use this property to mark all acronyms that are to be spelled out letter-by-
letter, for example. If we added a class called ‘spell’ to the abbr elements we want
spelled, as in the following example:

<abbr class="spell">IBM</abbr>

we could then define a CSS class to indicate that each letter should be voiced individ-
ually using the spell-out value:

.spell {
 -epub-speak-as: spell-out

}

It’s no longer left to the rendering engine to determine whether the acronym is “wordy”
enough to attempt to voice as a word now.

Note that the properties are all prefixed with “-epub-” because the
Speech module was not a recommendation at the time that EPUB 3 was
finalized. You must use this prefix until the Speech module is finalized
and reading systems begin supporting the unprefixed versions.

Tell It Like It Is: Text-to-Speech (TTS) | 61

 

The speak-as property provides the same functionality for numbers, ensuring they get
spoken one digit at a time instead of as a single number, something engines will not
typically do by default.

.digits {
 -epub-speak-as: digits

}

Adding this class to the following number would ensure that readers understand you’re
referring to the North American emergency line when listening to TTS playback:

911

The property also allows you to control whether or not to read out punctuation. Only
some punctuation ever gets announced in normal playback, as it’s generally used for
pause effects, but you could require all punctuation to be voiced using the literal-
punctuation value:

.punctuate {
 -epub-speak-as: literal-punctuation

}

This setting would be vital for grammar books, for example, where you would want
the entire punctuation for each example to be read out to the student. Conversely, to
turn punctuation off you’d use the no-punctuation value.

The speak-asproperty isn’t a complex control mechanism, but definitely serves a useful
role. Even if you are fluent with phonetic alphabets, there’s a point where it doesn’t
make sense to have to define or write out every letter or number to ensure the engine
doesn’t do the wrong thing, and this is where the Speech module helps.

Where the module excels, however, is in providing playback control. But this is also
an area where you may want to think twice before adding your own custom style sheet
rules. Most reading systems typically have their own internal rules for playback so that
the synthetic speech rendering doesn’t come out as one long uninterrupted stream of
monotone narration. When you add your own rules, you have the potential to interfere
with the reader’s default settings. But in the interests of thoroughness, we’ll take a quick
tour.

The first stop is the ability to insert pauses. Pauses are an integral part of the synthetic
speech reading process, as they provide a non-verbal indication of change. Without
them, it wouldn’t always be clear if a new sentence were beginning or a new paragraph,
or when one section ends and another begins.

The CSS3 Speech module includes a pause property that allows you to control the
duration to pause before and after any element. For example, we could define a half-
second pause before headings followed by a quarter-second pause after by including
the following rule:

h1 {
 -epub-pause: 50ms 25ms

}

62 | Chapter 3: It’s Alive: Rich Content Accessibility

Aural cues are equally helpful when it comes to identifying new headings, as the pause
alone may not be interpreted by the listener as you expect. The Speech module includes
a cue property for exactly this purpose:

h1 {
 -epub-pause: 50ms 25ms;
 -epub-cue: url('audio/ping.mp3') none

}

(Note that the addition of the none value after the audio file location. If omitted, the
cue would also sound after the heading was finished.)

And finally, the rest property provides fine-grained control when using cues. Cues
occur after any initial pause before the element (as defined by the pause property), and
before any pause after. But you may still want to control the pause that occurs between
the cue sounding and the text being read and between the end of the text being read
and the trailing cue sounding (i.e., so that the sound and the text aren’t run together).
The rest property is how you control the duration of these pauses.

We could update our previous example to add a 10 millisecond rest after the cue is
sounded to prevent run-ins as follows:

h1 {
 -epub-pause: 50ms 25ms;
 -epub-cue: url('audio/ping.mp3') none;
 -epub-rest: 10ms 0ms

}

But again, if I didn’t say it forcefully enough earlier, it’s best not to tweak these prop-
erties unless you’re targeting a specific user group, know their needs, and know that
their players will not provide sufficient quality “out of the box.” Tread lightly, in other
words.

A final property, that is slightly more of an aside, is voice-family. Although not specif-
ically accessibility related, it can provide a more flavorful synthesis experience for your
readers.

If your ebook contains dialogue, or the gender of the narrator is important, you can use
this property to specify the appropriate gender voice. We could set a female narrator
as follows:

body {
 -epub-voice-family: female

}

and a male class to use as needed for male characters:

.male {
 -epub-voice-family: male

}

If we added these rules to a copy of Alice’s Adventures in Wonderland, we could now
differentiate the Cheshire Cat using the male voice as follows:

Tell It Like It Is: Text-to-Speech (TTS) | 63

 

<p>
 Alice: But I don't want to go among mad people.

</p>

<p class="male">

 The Cat: Oh, you can't help that.

 We're all mad here. I'm mad. You're mad.

</p>

You can also specify different voices within the specified gender. For example, if a
reading system had two male voices available, you could add some variety to the char-
acters as follows by indicating the number of the voice to use:

.first-male {

 -epub-voice-family: male 1

}

.second-male {

 -epub-voice-family: male 2

}

At worst, the reading system will ignore your instruction and only present whatever
voice it has available, but this property gives you the ability to be more creative with
your text-to-speech renderings for those systems that do provide better support.

The CSS3 Speech module contains more properties than I’ve covered
here, but reading systems are only required to implement the limited set
of features described in this section. You may use the additional prop-
erties the module makes available (e.g., pitch and loudness control), but
if you do your content may not render uniformly across platforms.
Carefully consider using innovative or disruptive features in your con-
tent, as this may hinder interoperability across reading systems.

Whatever properties you decide to add, it is always good practice to separate them into
their own style sheet. You should also define them as applicable only for synthetic
speech playback using a media at-rule as follows:

@media speech {

 .spell {

 -epub-speak-as: spell-out

 }

}

As I noted earlier, reading systems will typically have their own defaults, and separating
your aural instructions will allow them to be ignored and/or turned off on systems
where they’re unwanted.

For completeness, you should also indicate the correct media type for the style sheet
when linking from your content document:

64 | Chapter 3: It’s Alive: Rich Content Accessibility

<link rel="stylesheet" media="speech" href="synth.css" />

And that covers the full range of synthetic speech enhancements. You now have a whole
arsenal at your disposal to create high-quality synthetic speech.

The Coded Word: Scripted Interactivity
Whether you’re a fan of scripted ebooks or not, EPUB 3 has opened the door to their
creation, so we’ll now take a look at some of the potential accessibility pitfalls and how
they can be avoided.

One of the key new terms you’ll hear in relation to the use of scripting in EPUB 3 is
progressive enhancement. The concept of progressive enhancement is not original to
EPUB, however, nor is it limited to scripting. I’ve actually been making a case for many
of its other core tenets throughout this guide, such as separation of content and style,
content conveying meaning, etc. Applied in this context, however, it means that script-
ing must only enhance your core content.

We’ve already covered why structure and semantics should carry all the information
necessary to understand your content, but that presupposes that it is all available. The
ability for scripts to remove access to content from anyone without a JavaScript-enabled
reading system is a major concern not just for persons using accessible devices, but for
all readers.

And that’s why scripting access to content is forbidden in EPUB 3. If you try to cir-
cumvent the specification requirement and treat progressive enhancement as just an
“accessibility thing,” you’re underestimating the readership that are going to rely on
your content rendering properly without scripting. Picture buying a book that has pages
glued together and you’ll get an idea of how excited your readers will be that you
thought no one would notice.

Note that it’s not a truism that you can expect JavaScript support in
EPUB 3 reading systems. There will undoubtedly be widespread support
for scripting in time, but support is an optional feature that vendors and
developers can choose to ignore.

Meeting the general requirement to keep your text accessible is really not asking a lot,
though. As soon as you turn to JavaScript to alter (or enable) access to prose, you should
realize you’re on the wrong path. To this end:

•		 Don’t include content that can only be accessed (made visible) through scripted
interaction.

•		 Don’t script-enable content based on a reader’s preferences, location, language, or
any other setting.

The Coded Word: Scripted Interactivity | 65

http://idpf.org/epub/30/spec/epub30-contentdocs.html#confreq-cd-scripted-spine

 

•		 Don’t require scripting in order for the reader to continue moving through the
content (e.g., choose your own adventure books).

Whether or not your prose can be accessed is not hard to test, even if it can’t be done
reliably by validators like epubcheck. Turn off JavaScript and see if you can navigate
your document from beginning to end. You may not get all the bells and whistles when
scripting is turned off, but you should be able to get through with no loss of information.
If you can’t, you need to review why prose is not available or has disappeared, why
navigation gets blocked, etc., and find another way to do what you were attempting.

Don’t worry that this requirement means all the potential scripting fun is being taken
out of ebooks, though. Games and puzzles and animations and quizzes and any other
secondary content you can think of that requires scripting are all fair game for inclusion.
But when it comes to including these there are two considerations to make, very similar
to choosing when to describe images:

•		 Does the scripted content you’re embedding include information that will be useful
to the reader’s comprehension (demos, etc.), or is it included purely for pleasure
(games)?

•		 Can the content be made accessible in a usable way and can you provide a fallback
alternative that provides the same or similar experience?

The answer to the first question will have some influence how you tackle the second.
If the scripted content provides information that the reader would otherwise not be
able to obtain from the prose, you should consider other alternative forms for making
that information available, for example:

•		 If you script an interactive demo using the canvas element, consider also providing
a transcript of the information for readers who may not be able to interact with it.

•		 If you’re including an interactive form that automatically evaluates the reader’s
responses, also include access to an answer key.

•		 If you’re adding a problem or puzzle to solve, also provide the solution so the reader
can still learn the steps to its completion.

None of the above suggestions are intended to remove the responsibility to try and
make the content accessible in the first place, though. Scripting of accessible forms, for
example, should be a trivial task for developers familiar with WAI-ARIA (we’ll look at
some practices in the coming section). But trivial or not, because scripting will not
necessarily be available, it’s imperative that you provide other means for readers to
obtain the full experience.

If the scripted content is purely for entertainment purposes, however, create a fallback
commensurate with the value of that content to the overall ebook (if it absolutely cannot
be made accessible natively). Like decorative images, a reader unable to interact with
non-essential content is not going to be hugely interested in reading a five-page disser-
tation on each level of your game. A simple idea of what it does will usually suffice.

66	 | Chapter 3: It’s Alive: Rich Content Accessibility

http://code.google.com/p/epubcheck/

A Little Help: WAI-ARIA
Although fallbacks are useful when scripting is not available, you should still aim to
make your scripted content accessible to all readers. Enter the W3C Web Accessibility
Initiative’s (WAI) Accessible Rich Internet Application (ARIA) specification.

The technology defined in this specification can be used in many situations to improve
content accessibility. We’ve already encountered the aria-describedby attribute in
looking at how to add descriptions and summaries, for example.

I’m now going to pick out three common cases for scripting to further explore how
ARIA can enhance the accessibility of EPUBs: custom controls, forms, and live regions.

Custom Controls
Custom controls are not standard form elements that you stylize to suit your needs,
just to be clear. Those are the good kinds of custom controls—if you want to call them
custom—as they retain their inherent accessibility traits whatever you style them to
look like. Readers will not have problems interacting with these controls as they natively
map to the underlying accessibility APIs, and so will work regardless of the scripting
capabilities any reading system has built in.

A custom control is the product of taking an HTML element and enhancing it with
script to emulate a standard control, or building up a number of elements for the same
purpose. Using images to simulate buttons is one of the more common examples, as
custom toolbars are often created in this way. There is typically no native way for a
reader using an accessible device to interact with these kinds of custom controls, how-
ever, as they are presented to them as whatever HTML element was used in their cre-
ation (e.g., just another img element in the case of image buttons).

It would be ideal if no one used custom controls, and you should try to avoid them
unless you have no other choice, but the existence of ARIA reflects the reality that these
controls are also ubiquitous. The increase in native control types in HTML5 holds out
hope for a reduction in their use, but it would be neglectful not to cover some of the
basics of their accessible creation. Before launching out on your own, it’s good to know
what you’re getting into.

There are widely available toolkits, like jQuery, that bake ARIA acces-
sibility into many of the custom widgets they allow you to create. You
should consider using these if you don’t have a background in creating
accessible controls.

If you aren’t familiar with ARIA, a very quick, high-level introduction for custom con-
trols is that it provides a map between the new control and the standard behaviors of
	
the one being emulated (e.g., allowing your otherwise-inaccessible image to function
	

A Little Help: WAI-ARIA | 67

http://www.w3.org/TR/wai-aria/
http://jquery.com/

 

identically to the button element as far as the reader is concerned). This mapping is
critical, as it’s what allows the reader to interact with your controls through the un-
derlying accessibility API. (The ARIA specification includes a graphical depiction that
can help visualize this process.)

Or, put differently, ARIA is what allows the HTML element you use as a control to be
identified as what it represents (button) instead of what it is (image). It also provides a
set of attributes that can be set and controlled by script to make interaction with the
control accessible to all. As the reader manipulates your now-identifiable control, the
changes you make to these attributes in response get passed back to the underlying
accessibility API. That in turn allows the reading system or assistive technology to relay
the new state on to the reader, completing the cycle of interaction.

But to get more specific, the role an element plays is defined by attaching the ARIA
role element to it. The following is a small selection of the available role values you can
use in this attribute:

• alert

• button

• checkbox

• dialog

• menuitem

• progressbar

• radio

• scrollbar

• tab

• tree

Here’s how we could now use this attribute to define an image as a audio clip start
button:

<img src="controls/start.png"
 id="audio-start"
 role="button"
 tabindex="0"
 alt="Start"/>

Identifying the role is the easy part, though. Just as standard form controls have states
and properties that are controlled by the reading system, so too must you add and
maintain these on any custom controls you create.

A state, to clarify, tells you something about the nature of the control at a given point
in time: if an element represents a checkable item, for example, its current state will
either be checked or unchecked; if it can be hidden, its state may be either hidden or
visible; if it’s collapsible, it could be expanded or collapsed; and so on.

68 | Chapter 3: It’s Alive: Rich Content Accessibility

http://www.w3.org/TR/wai-aria/introduction#contractmodel
http://www.w3.org/TR/wai-aria/roles#widget_roles

Properties, on the other hand, typically provide meta information about the control:
how to find its label, how to find a description for it, its position in a set, etc.

States and properties are both expressed in ARIA using attributes. For example, the list
of available states currently includes all of the following:

• aria-busy

• aria-checked

• aria-disabled

• aria-expanded

• aria-grabbed

• aria-hidden

• aria-invalid

• aria-pressed

• aria-selected

The list of available properties is much larger, but a small sampling includes:

• aria-activedescendant

• aria-controls

• aria-describedby

• aria-dropeffect

• aria-flowto

• aria-labelledby

• aria-live

• aria-posinset

• aria-required

See section 6.6 of the ARIA specification for a complete list of all states
and properties, including definitions.

All of these state and property attributes are supported in EPUB 3 content documents,
and their proper application and updating as your controls are interacted with is how
the needed information gets relayed back to the reader. (Note: you only have to main-
tain their values; you don’t have to worry about the underlying process that identifies
the change and passes it on.)

The natural question at this point is which states and properties do you have to set
when creating a custom control. It would be great if there were a simple chart that could
be followed, but unfortunately the ones that you apply is very much dependent on the

A Little Help: WAI-ARIA | 69

http://www.w3.org/TR/wai-aria/states_and_properties#state_prop_def

 

type of control you’re creating, and what you’re using it to do. To be fully accessible,
you need to consider all the ways in which a reader will be interacting with your control,
and how the states and properties need to be modified to reflect the reality of the control
as each action is performed. There is no one-size-fits-all solution, in other words.

To see which properties and states are supported by the type of control
you’re creating, refer to the role definitions in the specification. Knowing
what you can apply is helpful in narrowing down what you need to
apply.

If you don’t set the states and properties, or set them incorrectly, it follows that you’ll
impair the ability of the reader to access your content. Implementing them badly can
be just as frustrating for a reader as not implementing them at all, too. You could, for
example, leave the reader unable to start your audio clip, unable to stop it, stuck with
volume controls that only go louder or softer, etc. Their only recourse will be shutting
down their ebook and starting over.

These are the accessibility pitfalls you have to be aware of when you roll your own
solutions. Some will be obvious, like a button failing to initiate playback, but others
will be more subtle and not caught without extensive testing, which is also why you
should engage the accessibility community in checking your content.

But let’s take a look at some of the possible issues involved in maintaining states. Have
a look at the following much-reduced example of list items used to control volume:

 <li role="button"

 tabindex="0"
 onclick="increaseVolume('audio01')">Louder

 <li role="button"
 tabindex="0"
 onclick="decreaseVolume('audio01')">Softer

This setup looks simple, as it omits any states or properties at the outset, but now let’s
consider it in the context of a real-world usage scenario. As the reader increases the
volume, you’ll naturally be checking whether the peak has been reached in order to
disable the control. With a standard button, when the reader reached the maximum
volume you’d just set the button to be disabled with a line of JavaScript; the button
gets grayed out for readers and is marked as disabled for the accessibility API. Nice and
simple.

List items can’t be natively disabled, however (it just doesn’t make any sense, since they
aren’t expected to be active in the first place). You instead have to set the aria-dis
abled attribute on the list item to identify the change to the accessibility API, remove
the event that calls the JavaScript (as anyone could still activate and fire the referenced

70 | Chapter 3: It’s Alive: Rich Content Accessibility

http://www.w3.org/TR/wai-aria/roles#role_definitions

code if you don’t), and give sighted readers a visual effect to indicate that the button is
no longer active.

Likewise, when the reader decreases the volume from the max setting, you need to re-
enable the control, re-add the onclick event, and re-style the option as active. The same
scenario plays out when the reader hits the bottom of the range for the volume decrease
button.

In other words, instead of having to focus only on the logic of your application, you
now also have to focus on all the interactions with your custom controls. This extra
programming burden is why rolling your own was not recommended at the outset.
This is a simple example, too. The more controls you add, the more complex the process
becomes and the more potential side-effects you have to consider and account for.

If you still want to pursue your own controls, though, or just want to learn more, the
Illinois Center for Information Technology and Web Accessibility maintains a com-
prehensive set of examples, with working code, that are worth the time to review. You’ll
discover much more from their many examples than I could reproduce here. The ARIA
authoring practices guide also walks through the process of creating an accessible con-
trol.

A quick note on tabindex is also in order, as you no doubt noticed it on the preceding
examples. Although this is actually an HTML attribute, it goes hand-in-hand with ARIA
and custom controls because it allows you to specify additional elements that can re-
ceive keyboard focus, as well the order in which all elements are traversed (i.e., it im-
proves keyboard accessibility). It is critical that you add the attribute to your custom
controls, otherwise readers won’t be able to navigate to them.

What elements a reader can access by the keyboard by default is reading
system-dependent, but typically only links, form elements, and multi-
media and other interactive elements receive focus by default. Keep this
in mind when you roll your own controls, otherwise readers may not
have access to them.

Here’s another look at our earlier image button again:

<img src="controls/start.png"

 id="audio-start"

 alt="Start"

 role="button"

 tabindex="0"/>

By adding the attribute with the value 0, we’ve enabled direct keyboard access to this
img element. The 0 value indicates that we aren’t giving this control any special signif-
icance within the document, which is the default for all elements that can be natively
tabbed to. To create a tab order, we could assign incrementing positive integers to the
controls, but be aware that this can affect the navigation of your document, as all ele-
ments with a positive tabindex value are traversed before those set to 0 or not specified

A Little Help: WAI-ARIA | 71

http://test.cita.uiuc.edu/aria/
http://www.w3.org/TR/wai-aria-practices/#accessiblewidget
http://www.w3.org/TR/wai-aria-practices/#accessiblewidget

 

at all (in other words, don’t add the value 1 because to you it’s the first element in your
control set).

In many situations, too, a single control would not be made directly accessible. The
element that contains all the controls would be the accessible element, as in the fol-
lowing example:

<div role="group" tabindex="0">

</div>

Access to the individual controls inside the grouping div would be script-enabled. This
would allow the reader to quickly skip past the control set if they aren’t interested in
what it does (otherwise they would have to tab through every control inside it).

See the HTML5 specification for more information on how this attribute
works.

A last note for this section concerns event handlers. Events are what are used to trigger
script actions (onclick, onblur, etc.). How you wire up your events can impact on the
ability of the reader to access your controls, and can lead to keyboard traps (i.e., the
inability to leave the control), so you need to pay attention to how you add them.

We could add an onclick event to our image button to start playback as follows:

<img src="controls/start.png"
 id="audio-start"
 alt="Start"
 role="button"
 tabindex="0"
 onclick="startPlayback('audio01')"/>

But, if we’d accidentally forgotten the tabindex attribute, a reader navigating by key-
board would not have been able to find or access this control. Even though onclick is
considered a device-independent event, if the reader cannot reach the element they
cannot use the Enter key to activate it, effectively hiding the functionality from them.

You should always ensure that actions can be triggered in a device-independent man-
ner, even if that means repeating your script call in more than one event type. Don’t
rely on any of your readers using a mouse, for example.

But again, it pays to engage people who can test your content in real-world scenarios
to help discover these issues than to hope you’ve thought of everything.

72 | Chapter 3: It’s Alive: Rich Content Accessibility

http://dev.w3.org/html5/spec/Overview.html#attr-tabindex
http://dev.w3.org/html5/spec/Overview.html#attr-tabindex

Forms
Having covered how to create custom controls, we’ll now turn to forms, which are
another common problem area ARIA helps address. To repeat myself for a moment,
though, the first best practice when creating forms is to always use the native form
elements that HTML5 provides. See the last section again for why rolling your own is
not a good idea.

When it comes to implementing forms, the logical ordering of elements is one key to
simplifying access and comprehension. The use of tabindex can help to correct navi-
gation, as we just covered, but it’s better to ensure your form is logically navigable in
the first place. Group form fields and their labels together when you can, or place them
immediately next to each other so that one always follows the other in the reading order.

And always clearly identify the purpose of form fields using the label element. You
should also always add the new HTML5 for attribute so that the labels can be located
regardless of how the reader enters the field or where they are located in the document
markup. This attribute identifies the id of the form element the label element labels:

<label id="fname-label" for="fname">First name:</label>

<input type="text"
 id="fname"
 name="first-name"
 aria-labelledby="fname-label" />

I’ve also added the aria-labelledby attribute to the input element in this example to
ensure maximum compatibility across systems, but its use is critical if your form field
is not identified by a label element (only label takes the for attribute). As the label
element can be used in just about every element that can carry a label, there’s little good
reason to omit using it.

For example, if you have to use a table to lay out your form, don’t be lazy and use table
cells alone to convey meaning:

<table>
 <tr>

 <td>
 <label id="fname-label" for="fname">First name:</label>

 </td>
 <td>

 <input type="text"
 id="fname"
 name="first-name"
 aria-labelledby="fname-label" />

 </td>
 </tr>
 …

<table>

Note that you also should include the for attribute regardless of whether the label
precedes, follows or includes the form field.

A Little Help: WAI-ARIA | 73

 

Another pain point comes when a reader fills in a form only to discover after the fact
that you had special instructions they were supposed to follow. When specifying entry
requirements for completing the field, include them within the label or attach an aria­
describedby attribute so that the reader can be informed right away:

<label for="username-label">User name:</label>

<input type="text"
 id="uname"
 name="username"
 aria-labelledby="username-label"
 aria-describedby="username-req" />

User names must be between 8 and 16 characters in length and
contain only alphanumeric characters.

The new HTML5 pattern attribute can also be used to improve field completion. If
your field accepts regular expression-validatable data, you can add this attribute to
automatically check the input. When using this attribute, the HTML5 specification
recommends the restriction be added to the title attribute.

We could reformulate our previous example now as follows:

<input type="text"
 id="uname"
 name="username"
 aria-labelledby="username-label"
 pattern="[A-Za-z0-9]{8,16}"
 title="Enter a user name between 8 and 16 characters in length

and containing only alphanumeric characters" />

Another common nuisance in web forms of old has been the use of asterisks and similar
text markers and visual cues to indicate when a field was required, as there was no
native way to indicate the requirement to complete. These markers were not always
identifiable by persons using assistive technologies. HTML5 now includes the
required attribute to cover this need, however. ARIA also includes a required attribute
of its own. Similar to labeling, it’s a good practice at this time to add both to ensure
maximum compatibility:

<input type="text"
 id="uname"
 name="username"
 aria-labelledby="username-label"
 pattern="[A-Za-z0-9]{8,16}"
 title="Enter a user name between 8 and 16 characters in length

and containing only alphanumeric characters"
 required="required"
 aria-required="true" />

An accessible reading system could now announce to the reader that the field is required
when the reader enters it. Adding a clear prose indication that the field is required to
the label is still good practice, too, as colors and symbols are never a reliable or acces-
sible means of conveying information:

74 | Chapter 3: It’s Alive: Rich Content Accessibility

<label for="uname">User name: (required)</label>

ARIA also includes a property for setting the validity of an entry field. If the reader
enters invalid data, you can set the aria-invalid property in your code so that the
reading system can easily identify and move the reader to the incorrect field. For ex-
ample, your scripted validation might include the following line to set this state when
the input doesn’t pass your tests:

document.getElementById('address').setAttribute('aria-invalid', true);

Note, however, that you must not set this state by default; no data entered does not
indicate either validity or invalidity.

In addition to labeling individual form fields, you should also group and identify any
regions within your form (a common example on the web is forms with separate fields
for billing and shipping information). The traditional HTML fieldset element and its
child legend element cover this need without special attributes.

So, to try and sum up, the best advice with forms is to strive to make them as accessible
as you can natively (good markup and logical order), but not to forget that WAI-ARIA
exists and has a number of useful properties and states that can enhance your forms to
make them more accessible.

Live Regions
Although manipulating the prose in your ebook by script is forbidden, it doesn’t mean
you can’t dynamically insert or modify any text. Automatically displaying the result of
a quiz or displaying the result of a calculation are a just a couple of examples of cases
where dynamic prose updates would legitimately be useful for readers. You may also
want to provide informative updates, such as the number of characters remaining in
an entry field.

The problem with these kinds of dynamic updates is how they’re made available to
readers using accessible technologies. When you update the main document by re-
writing the inner text or html of an element, how that change gets reported to the
accessible technology, if at all, is out of your control in plain old HTML.

The update could force the reader to lose their place and listen to the changed region
every time, or it could be ignored entirely. ARIA has solved this problem with the
introduction of live regions, however.

If you’re going to use an element to insert dynamic text, you mark this purpose by
attaching an aria-live attribute to it. The value of this attribute also tells an assistive
technology how to present the update to the reader. If you set the value polite, for
example, the assistive technology will wait until an idle period before announcing the
change (e.g., after the user is done typing for character counts). If you set it to asser
tive, the reading system will announce the change immediately (e.g., for results that
the reader is waiting on).

A Little Help: WAI-ARIA | 75

 

You could set up a simple element to write results to with no more code than follows:

<div id="result" aria-live="assertive"/>

Now when you write using the innerHTML property, the new text will be read out im-
mediately. Be careful when using the assertive setting, however. You can annoy your
readers if their system blurts out every inconsequential change you might happen to
write as it happens.

If you write out results a bit at a time, or need to update different elements within the
region, the aria-busy attribute should be set to true before the first write to indicate to
the reading system that the update is in progress. If you don’t, the reading system will
announce the changes as you write them. So long as the state is marked as busy
(true), however, the reading system will wait for the state to be changed backed to
false before making any announcement.

You should also take care about how much information you inform the reader of. If
you’re updating only small bits of text, the reading system might only announce the
new text, leaving the reader confused about what is going on. Conversely, you might
add a new node to a long list, but the reader might be forced to listen to all the entries
that came before it again, depending on how you have coded your application.

The aria-atomic attribute gives you control over the amount of text that gets an-
nounced. If you set it to true, for a region, all the content will be read whenever you
make a change inside it. For example, if you set a paragraph as live and add this at-
tribute, then change the text in a span inside it, the entire paragraph will be read. In
this example:

<p aria-live="true" aria-atomic="true">
 Your current BMI is:

</p>

Writing the reader’s body mass index value to the embedded span will cause the whole
text to be read. If you set the attribute to false (or omit it), only the prose in the element
containing the text change gets announced. Using our last example, only the body mass
index value in isolation would be announced.

You can further control this behavior by also attaching the aria-relevant attribute.
This attribute allows you to specify, for example, that all node changes in the region
should be announced, only new node additions, or only deletions (e.g., for including
data feeds). It can also be set to only identify text changes. You can even combine values
(the default is additions text).

We could use these attributes to set up a fictional author update box using an ordered
list as follows:

<p id="feed-label">What's the Author Saying…</p>
<ol id="feed"

 aria-live="polite"
 aria-atomic="true"
 aria-relevant="additions"

76 | Chapter 3: It’s Alive: Rich Content Accessibility

 aria-labelledby="feed-label">
 …

Go online to view

Only the new list items added for each incoming message will be read now. The old
messages we pull out will disappear silently. (And I’ve also added a traditional link out
for anyone who doesn’t have scripting enabled!)

There are also special roles that automatically identify a region as live. Instead of using
the aria-live attribute to indicate our results field, we could have instead set up an
alert region as follows:

<div role="alert” id="results"/>

The following roles are also treated as indicating live regions: marquee, log, status, and
timer.

And that’s a quick run-through of how to ensure that all readers get alerted of changes
you make to the content. It’s not a complicated process, but you need to remember to
ensure that you set these regions otherwise a segment of your readers will not get your
updates.

My hope is these sections have given you an easy introduction to ARIA
and the features it provides to make EPUB content accessible

For additional information, some good starting points include: the cov-
erage given in Universal Design for Web Applications by Wendy Chis-
holm and Matt May (also an excellent guide to accessible Web content
development); Gez Lemon’s introduction to creating rich applications;
and, of course, the authoring practices guide that accompanies the ARIA
specification.

A Blank Slate: Canvas
Another anticipated use for scripting is to automate the new HTML5 canvas element.
This element provides an automatable surface for drawing on, whether it’s done by the
content creator (games, animations, etc.) or the reader (drawing or writing surface),
which is why I omitted tackling it with the rest of the semantics and structure elements.

Although a potentially interesting element to use in ebooks, at this time the canvas
element remains largely a black hole to assistive technologies. A summary of the dis-
cussions that have been taking place to fix the accessibility problems as of writing is
available on the Paciello Group website. Fixes for these accessibility issues will un-
doubtedly come in time, perhaps directly for the element or perhaps through WAI-
ARIA, but it’s too soon to say.

A Blank Slate: Canvas | 77

http://shop.oreilly.com/product/9780596518745.do
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://www.w3.org/WAI/PF/aria-practices/
http://www.paciellogroup.com/blog/2011/12/html5-canvas-accessibility-discussions-2009-2011/
http://www.paciellogroup.com/blog/2011/12/html5-canvas-accessibility-discussions-2009-2011/

 

So is the answer to avoid the element completely until the problems are solved? It would
be nice if you could, but wouldn’t be realistic to expect of everyone. Using it judiciously
would be a better course to steer.

For now including accessible alternatives is about all you can do. If you’re using the
element to draw graphs and charts, you could add a description with the data using
the aria-describedby attribute and the techniques we outlined while dealing with im-
ages. If you’re using the element for games and the like, consider the issues we detailed
at the outset of the section in determining how much information to give.

With canvas, we really have to wait and see, unfortunately.

78 | Chapter 3: It’s Alive: Rich Content Accessibility

CHAPTER 4

Conclusion

EPUB 3 holds out much promise, but only if you care about the quality of your content
and actively work to make it better. If I’ve done my job, though, accessibility is hopefully
no longer a foreign concept or impossible-sounding ideal anymore. It’s fundamentally
about high-quality data, with hooks in for people who can’t consume the content in
its native format, whether auditory or visual.

The people you need to produce accessible EPUBs are not hard to find, either. Web
content developers abound as the internet generation comes of age. And unlike in the
early dark days of web accessibility, more and more people are learning WCAG and
WAI-ARIA guidelines for accessible production. They’re not skills you can ignore as a
developer, as so much basic accessibility legislation is premised on them now.

My point, however, is only that creating accessible EPUB 3 publications is not a costly
proposition. It doesn’t require seeking out highly-specialized skills that won’t provide
you a return on your investment. Reflowable web content is the direction publishing
is heading in, and well down the road to.

But to wrap up, no guide can ever make you take action, only impart some measure of
knowledge. Assuming I’ve met that threshold, the onus is now on you to take what
you’ve learned and put it to good use.

EPUB 3 Best Practices Teaser
Accessible EPUB 3 is an excerpt of the book EPUB 3 Best Practices, currently in devel-
opment for publication in 2012.

For more details and updates on its anticipated release date, keep an eye on the web
page for the book:

http://shop.oreilly.com/product/0636920024897.do

79

http://shop.oreilly.com/product/0636920024897.do

 

Figure 4-1. EPUB 3 Best Practices, coming in 2012
	

80 | Chapter 4: Conclusion

About the Book
The new EPUB 3 specification from the IDPF incorporates a wide range of technologies
and functionality that are set to revolutionize electronic publishing. The format is
poised to make the static two-dimensional page a thing of the past, introducing the
world to new rich multimedia reading experiences and scripted interactivity. But a
specification that offers so much can be a daunting thing to learn.

EPUB 3 Best Practices steps in to help fill the knowledge void. Authored by people
involved in the development of the specification, and with extensive experience in
electronic publishing, this guide will provide you with a solid foundation on which to
begin developing your own EPUBs. Topics covered include:

•		 A comprehensive survey of accessible production features and best practices

•		 A walkthrough of the new global language support features

•		 An introduction to the new multimedia elements and how to use them to embed
content

•		 A guide to best practices for authoring of interactive elements and scripting

•		 A review of publication and distribution metadata

•		 Techniques for fixed and adaptive layouts

EPUB 3 Best Practices is a must-read for anyone looking to unleash the potential of the
new format.

EPUB 3 Best Practices Teaser | 81

About the Author

Matt Garrish lives and works in Toronto where he does what he can to help bridge the
print divide that sadly still keeps much of the world’s literature and information from
being available to everyone. He’s worked closely with CNIB and the DAISY Consortium
in their efforts to make the world a more accessible place—including editing the Z39.98
Authoring and Interchange specification—and drew on his years of experience ripping
the guts out of EPUBs to make braille when invited to work as the editor of the EPUB3
revision. He is the author of What is EPUB3?.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	The Digital Famine
	Accessibility and Usability

	Chapter 2. Building a Better EPUB: Fundamental Accessibility
	A Solid Foundation: Structure and Semantics
	Data Integrity
	Separation of Style
	Semantic Inflection
	Language
	Logical Reading Order
	Sections and Headings
	Context Changes
	Lists
	Tables
	Figures
	Images
	SVG
	MathML
	Footnotes
	Page Numbering

	Getting Around: Navigating an EPUB
	The Untold Story: Metadata

	Chapter 3. It’s Alive: Rich Content Accessibility
	The Sound and the Fury: Audio and Video
	Timed Tracks

	Talk to Me: Media Overlays
	Building an Overlay
	Structural Considerations

	Tell It Like It Is: Text-to-Speech (TTS)
	PLS Lexicons
	SSML
	CSS3 Speech

	The Coded Word: Scripted Interactivity
	A Little Help: WAI-ARIA
	Custom Controls
	Forms
	Live Regions

	A Blank Slate: Canvas

	Chapter 4. Conclusion
	EPUB 3 Best Practices Teaser
	About the Book

